Skip to main content
Log in

Biological water-oxidizing complex: a nano-sized manganese–calcium oxide in a protein environment

  • Review
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The resolution of Photosystem II (PS II) crystals has been improved using isolated PS II from the thermophilic cyanobacterium Thermosynechococcus vulcanus. The new 1.9 Å resolution data have provided detailed information on the structure of the water-oxidizing complex (Umena et al. Nature 473: 55–61, 2011). The atomic level structure of the manganese–calcium cluster is important for understanding the mechanism of water oxidation and to design an efficient catalyst for water oxidation in artificial photosynthetic systems. Here, we have briefly reviewed our knowledge of the structure and function of the cluster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ädelroth P, Lindberg K, Andreasson LE (1995) Studies of Ca2+ binding in spinach photosystem II using 45Ca2+. Biochemistry 34:9021–9027

    Article  PubMed  Google Scholar 

  • Allakhverdiev SI (2011) Recent progress in the studies of structure and function of photosystem II. J Photochem Photobiol B: Biol 104:1–8

    Article  CAS  Google Scholar 

  • Allakhverdiev SI (2012) Photosynthetic and biomimetic hydrogen production. Int J Hydrogen Energy 37:8744–8752

    Article  CAS  Google Scholar 

  • Allakhverdiev SI, Murata N (2004) Environmental stress inhibits the synthesis de novo of proteins involved in the photodamage-repair cycle of photosystem II in Synechocystis sp. PCC 6803. Biochim Biophys Acta 1657:23–32

    Article  PubMed  CAS  Google Scholar 

  • Allakhverdiev SI, Kreslavski VD, Thavasi V, Zharmukhamedov SK, Klimov VV, Nagata T, Nishihara H, Ramakrishna S (2009) Hydrogen photoproduction by use of photosynthetic organisms and biomimetic systems. Photochem Photobiol Sci 8:148–156

    Article  PubMed  CAS  Google Scholar 

  • Allakhverdiev SI, Thavasi V, Kreslavski VD, Zharmukhamedov SK, Klimov VV, Ramakrishna S, Los DA, Mimuro M, Nishihara H, Carpentier R (2010) Photosynthetic hydrogen production. J Photochem Photobiol, C 11:87–99

    Article  CAS  Google Scholar 

  • Aro EM, Virgin I, Andersson B (1993) Photoinhibition of photosystem II inactivation, protein damage and turnover. Biochim Biophys Acta 1143:113–134

    Article  PubMed  CAS  Google Scholar 

  • Barber J (2008) Crystal structure of the oxygen-evolving complex of photosystem II. Inorg Chem 47:1700–1710

    Article  PubMed  CAS  Google Scholar 

  • Barber J, Murray JW (2008) Revealing the structure of the Mn-cluster of photosystem II by X-ray crystallography. Coord Chem Rev 252:233–243

    Article  CAS  Google Scholar 

  • Bard AJ, Fox MA (1995) Artificial photosynthesis: solar splitting of water to hydrogen and oxygen. Acc Chem Res 28:141–145

    Article  CAS  Google Scholar 

  • Beauchemin R, Gauthier A, Harnois J, Boisvert S, Govindachary S, Carpentier R (2007) Spermine and spermidine inhibition of photosystem II: disassembly of the oxygen evolving complex and consequent perturbation in electron donation from Tyrz to P680+ and the quinone acceptors Q A to QB. Biochim Biophys Acta 1767:905–912

    Article  PubMed  CAS  Google Scholar 

  • Bockris JOM (1977) Energy-the solar hydrogen alternative. Wiley, New York

    Google Scholar 

  • Boisvert S, Joly D, Leclerc S, Govindachary S, Harnois J, Carpentier R (2007) Inhibition of the oxygen-evolving complex of photosystem II and depletion of extrinsic polypeptides by nickel. Biometals 20:879–889

    Article  PubMed  CAS  Google Scholar 

  • Boppana VBR, Jiao F (2011) Nanostructured MnO2: an efficient and robust water oxidation catalyst. Chem Commun 47:8973–8975

    Article  CAS  Google Scholar 

  • Boussac A, Rappaport F, Carrier P, Verbavatz JM, Gobin R, Kirilovsky D, Rutherford AW, Sugiura M (2004) Biosynthetic Ca2+/Sr2+ exchange in the photosystem II oxygen evolving enzyme of Thermosynechococcus elongatus. J Biol Chem 279:22809–22819

    Article  PubMed  CAS  Google Scholar 

  • Bricker TM (1992) Oxygen evolution in the absence of the 33-kilodalton manganese-stabilizing protein. Biochemistry 31:4623–4628

    Article  PubMed  CAS  Google Scholar 

  • Bricker TM, Roose JL, Fagerlund RD, Frankel LK, Eaton-Rye JJ (2012) The extrinsic proteins of photosystem II. Biochim Biophys Acta 1817:121–142

    Article  PubMed  CAS  Google Scholar 

  • Brimblecombe R, Koo A, Dismukes GC, Swiegers GF, Spiccia L (2010) Solar-driven water oxidation by a bio-inspired manganese molecular catalyst. J Am Chem Soc 132:2892–2894

    Article  PubMed  CAS  Google Scholar 

  • Duan L, Bozoglian F, Mandal S, Stewart B, Privalov T, Llobet A, Sun L (2012) A molecular ruthenium catalyst with water-oxidation activity comparable to that of photosystem II. Nature Chem 4:418–423

    Article  CAS  Google Scholar 

  • Dau H, Haumann M (2008) The manganese complex of photosystem II in its reaction cycle-basic framework and possible realization at the atomic level. Coord Chem Rev 252:273–295

    Article  CAS  Google Scholar 

  • Dau H, Iuzzolino L, Dittmer J (2001) The tetra-manganese complex of photosystem II during its redox cycle: X-ray absorption results and mechanistic implications. Biochim Biophys Acta 1503:24–39

    Article  PubMed  CAS  Google Scholar 

  • Debus RJ (2008) Protein ligation of the photosynthetic oxygen-evolving center. Coord Chem Rev 252:244–258

    Article  PubMed  CAS  Google Scholar 

  • Dismukes GC, Brimblecombe R, Felton GAN, Pryadun RS, Sheats JE, Spiccia L, Swiegers GF (2009) Development of bioinspired Mn4O4-cubane water oxidation catalysts: lessons from photosynthesis. Acc Chem Res 42:1935–1943

    Article  PubMed  CAS  Google Scholar 

  • Eaton-Rye JJ, Shand JA, Nicoll WS (2003) pH-Dependent photoautotrophic growth of specific photosystem II mutants lacking lumenal extrinsic polypeptides in Synechocystis PCC 6803. FEBS Lett 543:148–153

    Article  PubMed  CAS  Google Scholar 

  • Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S (2004) Architecture of the photosynthetic oxygen evolving centre. Science 303:1831–1838

    Article  PubMed  CAS  Google Scholar 

  • Gauthier A, Carpentier R (2008) Disorganization of the Mn4Ca complex of photosystem II by ruthenium red: a thermoluminescence study. Luminescence 24:108–114

    Article  CAS  Google Scholar 

  • Ghanotakis DF, Babcock GT, Yocum CF (1984) Calcium reconstitutes high rates of oxygen evolution in polypeptide depleted photosystem II preparations. FEBS Lett 167:127–130

    Article  CAS  Google Scholar 

  • Golbeck JH (2006) Advances in photosynthesis and respiration photosystem I: the light-driven plastocyanin: ferredoxin oxidoreductase, vol 24. Springer, Dordrecht

    Google Scholar 

  • Govindjee Shevela D (2011) Adventures with cyanobacteria: a personal perspective. Front Plant Sci 2:1–17

    Article  CAS  Google Scholar 

  • Govindjee, Kern JF, Messinger J, Whitmarsh J (2010) Photosystem II. In: Encyclopedia of life sciences (ELS). Wiley, Chichester. doi:10.1002/9780470015902.a0000669

  • Grundmeier A, Dau H (2012) Structural models of the manganese complex of photosystem II and mechanistic implications. Biochim Biophys Acta 1817:88–105

    Article  PubMed  CAS  Google Scholar 

  • Guo X, Sigle W, Fleig J, Maier J (2002) Role of space charge in the grain boundary blocking effect in doped zirconia. Solid State Ionics 154–155:555–561

    Article  Google Scholar 

  • Guskov A, Kern J, Gabdulkhakov A, Broser M, Zouni A, Saenger W (2009) Cyanobacterial photosystem II at 2.9-Å resolution and the role of quinones, lipids, channels and chloride. Nat Struct Mol Biol 16:334–342

    Article  PubMed  CAS  Google Scholar 

  • Hamdani S, Carpentier R (2009) Interaction of methylamine with extrinsic and intrinsic subunits of photosystem II. Biochim Biophys Acta 1787:1223–1229

    Article  PubMed  CAS  Google Scholar 

  • Hammarstrom L, Styring S (2011) Proton-coupled electron transfer of tyrosines in photosystem II and model systems for artificial photosynthesis: the role of a redox-active link between catalyst and photosensitizer. Energy Environ Sci 4:2379–2388

    Article  CAS  Google Scholar 

  • Hammarstrom L, Sun L, Akermark B, Styring S (2001) A biomimetic approach to artificial photosynthesis: Ru(II)–polypyridine photo-sensitisers linked to tyrosine and manganese electron donors. Spectrochim Acta, A 37:2145–2160

    Google Scholar 

  • Harriman A, Richoux M, Christensen PA, Mosseri S, Neta P (1987) Redox reactions with colloidal metal o xides. Comparison of radiation-generated and chemically generated RuO2·2H2O. J Chem Soc, Faraday Trans 1(83):3001–3014

    Google Scholar 

  • Hillier W, Wydrzynski T (2008) 18O-Water exchange in photosystem II: substrate binding and intermediates of the water-splitting reaction. Coord Chem Rev 252:306–317

    Article  CAS  Google Scholar 

  • Ho FM (2008) Uncovering channels in photosystem II by computer modelling: current progress, future prospects, and lessons from analogous systems. Photosynth Res 98:503–522

    Article  PubMed  CAS  Google Scholar 

  • Ho FM, Styring S (2008) Access channels and methanol binding site to the CaMn4 cluster in photosystem II based on solvent accessibility simulations, with implications for substrate water access. Biochim Biophys Acta 1777:140–153

    Article  PubMed  CAS  Google Scholar 

  • Hocking RK, Brimblecombe R, Chang L, Singh A, Cheah MH, Glover C, Casey WH, Spiccia L (2011) Water-oxidation catalysis by manganese in a geochemical-like cycle. Nat Chem 3:461–465

    PubMed  CAS  Google Scholar 

  • Hoganson CW, Babcock GT (1997) A metalloradical mechanism for the generation of oxygen from water in photosynthesis. Science 277:1953–1956

    Article  PubMed  CAS  Google Scholar 

  • Hou HJ (2010) Structural and mechanistic aspects of Mn-oxo and co-based compounds in water oxidation catalysis and potential applications in solar fuel production. J Integr Plant Biol 52:704–711

    Article  PubMed  CAS  Google Scholar 

  • Hou HJ, Mauzerall D (2011) Listening to PS II: enthalpy, entropy, and volume changes. J Photochem Photobiol, B 104:357–365

    Article  CAS  Google Scholar 

  • Jamnik J, Maier J (2003) Nanocrystallinity effects in lithium battery materials. Aspects of nano-ionics. Phys Chem Chem Phys 5:5215–5220

    Article  CAS  Google Scholar 

  • Jiao F, Frei H (2010a) Nanostructure manganese oxide clusters supported on mesoporous silica as efficient oxygen-evolving catalysts. Chem Commun 46:2920–2922

    Article  CAS  Google Scholar 

  • Jiao F, Frei H (2010b) Nanostructured cobalt and manganese oxide clusters as efficient water oxidation catalysts. Energy Environ Sci 3:1018–1027

    Article  CAS  Google Scholar 

  • Jo IS, Han DU, Cho YJ, Lee EJ (2010) Effects of light, temperature, and water depth on growth of a rare aquatic plant, Ranunculus kadzusensis. J Plant Biol 54:384–395

    Google Scholar 

  • Joliot P (2005) Period-four oscillations of the flash-induced oxygen formation in photosynthesis. Photosynth Res 20:371–378

    Article  CAS  Google Scholar 

  • Joliot P, Kok B (1975) Oxygen evolution in photosynthesis. In: Govindjee (ed) Bioenergetics of photosynthesis. Academic Press, New York, pp 387–412

    Google Scholar 

  • Joliot P, Barbieri G, Chabaud R (1969) Un nouveau modele des centresphotochimiques du systeme II. Photochem Photobiol 10:309–329

    Article  CAS  Google Scholar 

  • Kamiya N, Shen JR (2003) Crystal structure of oxygen-evolving photosystem II from Thermosynechococcus vulcanus at 3.7 Å resolution. Proc Natl Acad Sci USA 100:98–103

    Article  PubMed  CAS  Google Scholar 

  • Kanan MW, Nocera DG (2008) In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321:1072–1075

    Article  PubMed  CAS  Google Scholar 

  • Kawakami K, Umena Y, Kamiya N, Shen JR (2011) Structure of the catalytic, inorganic core of oxygen-evolving photosystem II at 1.9 Å resolution. J Photochem Photobiol, B 104:9–18

    Article  CAS  Google Scholar 

  • Keren N, Berg A, van Kan PJM, Levanon H, Ohad I (1997) Mechanism of photosystem II photoinactivation and D1 protein degradation at low light: the role of back electron flow. Proc Natl Acad Sci USA 94:1579–1584

    Article  PubMed  CAS  Google Scholar 

  • Kok B, Forbush B, McGloin M (1970) Cooperation of charges in photosynthetic O2 evolution: I. A linear four-step mechanism. Photochem Photobiol 11:457–475

    Article  PubMed  CAS  Google Scholar 

  • Komenda J, Sobotka R, Nixon PJ (2012) Assembling and maintaining the photosystem II complex in chloroplasts and cyanobacteria. Curr Opin Plant Biol 15:245–251

    Article  PubMed  CAS  Google Scholar 

  • Lee C, Lakshmi KV, Brudvig GW (2007) Probing the functional role of Ca2+ in the oxygen-evolving complex of photosystem II by metal ion inhibition. Biochemistry 46:3211–3223

    Article  PubMed  CAS  Google Scholar 

  • Limburg J, Szalai A, Brudvig GW (1999) A mechanistic and structural model for the formation and reactivity of a Mn(V) = O species in photosynthetic water oxidation. J Chem Soc, Dalton Trans 9:1353–1362

    Article  Google Scholar 

  • Lohmiller T, Cox N, Su JH, Messinger J, Lubitz W (2012) The basic properties of the electronic structure of the oxygen-evolving complex of photosystem II are not perturbed by Ca2+ removal. J Biol Chem 287:24721–24733

    Article  PubMed  CAS  Google Scholar 

  • Lutterman DA, Surendranath Y, Nocera DG (2009) A self-healing oxygen-evolving catalyst. J Am Chem Soc 131:3838–3839

    Article  PubMed  CAS  Google Scholar 

  • Mar T, Govindjee (1972) Kinetic models of oxygen evolution. J Theoret Biol 36:427–446

    Article  CAS  Google Scholar 

  • McEvoy J, Brudvig GW (2006) Water-splitting chemistry of photosystem II. Chem Rev 106:4455–4483

    Article  PubMed  CAS  Google Scholar 

  • Miyao M, Murata N (1984) Role of the 33 kDa polypeptide in preserving Mn in the photosynthetic oxygen-evolution system and its replacement by chloride ions. FEBS Lett 170:350–354

    Article  CAS  Google Scholar 

  • Mulo P, Sakurai I, Aro EM (2012) Strategies for psbA gene expression in cyanobacteria, green algae and higher plants: from transcription to PSII repair. Biochim Biophys Acta 1817:247–257

    Article  PubMed  CAS  Google Scholar 

  • Murata N, Takahashi S, Nishiyama Y, Allakhverdiev SI (2007) Photoinhibition of photosystem II under environmental stress. Biochim Biophys Acta 1767:414–421

    Article  PubMed  CAS  Google Scholar 

  • Murata N, Allakhverdiev SI, Nishiyama Y (2012) The mechanism of photoinhibition in vivo: re-evaluation of the roles of catalase, α-tocopherol, non-photochemical quenching, and electron transport. Biochim Biophys Acta 1817:1127–1133

    Article  PubMed  CAS  Google Scholar 

  • Najafpour MM (2006) Current molecular mechanisms of photosynthetic oxygen evolution. Plant Biosyst 140:163–170

    Article  Google Scholar 

  • Najafpour MM (2011a) Calcium manganese oxides as structural and functional models for active site in oxygen evolving complex in photosystem II: Lessons from simple models. J Photochem Photobiol B 104:111–117

    Article  PubMed  CAS  Google Scholar 

  • Najafpour MM (2011b) Amorphous manganese-calcium oxides as a possible evolutionary origin for the CaMn4 cluster in photosystem II. Orig Life Evol Biosph 41:237–247

    Article  PubMed  CAS  Google Scholar 

  • Najafpour MM (2011c) A soluble form of nano-sized colloidal manganese (IV) oxide as an efficient catalyst for water oxidation. Dalton Trans 40:3805–3807

    Article  PubMed  CAS  Google Scholar 

  • Najafpour MM (ed) (2012) Artificial photosynthesis. Tech Publications, Rijeka. ISBN 979-953-307-665-1

    Google Scholar 

  • Najafpour MM, Govindjee (2011) Oxygen evolving complex in photosystem II: better than excellent. Dalton Trans 40:9076–9084

    Article  PubMed  CAS  Google Scholar 

  • Najafpour MM, Allakhverdiev SI (2012) Manganese compounds as water oxidizing catalysts for hydrogen production via water splitting: from manganese complexes to nano-sized manganese oxides. Int J Hydrogen Energy 37:8753–8764

    Article  CAS  Google Scholar 

  • Najafpour MM, Nayeri S, Pashaei B (2011) Nano-size amorphous calcium–manganese oxide as an efficient and biomimetic water oxidizing catalyst for artificial photosynthesis: back to manganese. Dalton Trans 40:9374–9378

    Article  PubMed  CAS  Google Scholar 

  • Najafpour MM, Nemati Moghaddam A, Allakhverdiev SI, Govindjee (2012a) Biological water oxidation: lessons from nature. Biochim Biophys Acta 1817:1110–1121

    Article  PubMed  CAS  Google Scholar 

  • Najafpour MM, Pashaei B, Nayeri S (2012b) Nano-sized layered aluminium or zinc–manganese oxides as efficient water oxidizing catalysts. Dalton Trans 41:7134–7140

    Article  PubMed  CAS  Google Scholar 

  • Najafpour MM, Rahimi F, Amini M, Nayeri S, Bagherzadeh M (2012c) A very simple method to synthetize nano-sized manganese oxide: an efficient catalyst for water oxidation and epoxidation of olefins. Dalton Trans. doi:10.1039/C2DT30553D

    Google Scholar 

  • Navrotsky A, Lilova C, Ma K, Birkner N (2010) Nanophase transition metal oxides show large thermodynamically driven shifts in oxidation-reduction equilibria. Science 330:199–201

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama Y, Allakhverdiev SI, Murata N (2006) A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II. Biochim Biophys Acta 1757:742–749

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama Y, Allakhverdiev SI, Murata N (2011) Protein synthesis is the primary target of reactive oxygen species in the photoinhibition of photosystem II. Physiol Plant 142:35–46

    Article  PubMed  CAS  Google Scholar 

  • Ono TA, Inoue Y (1983) Mn-preserving extraction of 33-, 23-, and 16 kDa proteins from O2-evolving PS II particles by divalent salt-washing. FEBS Lett 164:255–260

    Article  CAS  Google Scholar 

  • Pace R (2005) An integrated artificial photosynthesis model. In: Collings AF, Critchley C (eds) Artificial photosynthesis: from basic biology to industrial application, 1st edn. Wiley, Weinheim, pp 13–34

    Google Scholar 

  • Payne JL, McClain CR, Boyer AG, Brown JH, Finnegan S, Kowalewski M, Krause RA Jr, Lyons SK, McShea DW, Novack-Gottshall PM, Smith FA, Spaeth P, Stempien JA, Wang SC (2011) The evolutionary consequences of oxygenic photosynthesis: a body size perspective. Photosynth Res 107:7–10

    Article  CAS  Google Scholar 

  • Pecoraro VL, Baldwin MJ, Caudle MT, Hsieh WY, Law NA (1998) A proposal for water oxidation in photosystem II. Pure Appl Chem 70:925–929

    Article  CAS  Google Scholar 

  • Peloquin JM, Campbell KA, Randall QW, Evanchik MA, Pecoraro VL, Armstrong WH, Britt RD (2000) 55Mn ENDOR of the S2-state multiline EPR signal of photosystem II: implications on the structure of the tetranuclear Mn cluster. J Am Chem Soc 22:10926–10942

    Article  CAS  Google Scholar 

  • Petrie S, Gatt P, Stranger R, Pace RJ (2012) The interaction of His337 with the Mn4Ca cluster of photosystem II. Phys Chem Chem Phys 14:4651–4657

    Article  PubMed  CAS  Google Scholar 

  • Pirson A (1937) A study of the nutrition and metabolism of Fontinalis and Chlorella. Z Bot 31:193–267

    CAS  Google Scholar 

  • Popelkova H, Betts SD, Lydakis-Simantiris N, Im MM, Swenson E, Yocum CF (2006) Mutagenesis of basic residues R151 and R161 in manganese-stabilizing protein of photosystem II causes inefficient binding of chloride to the oxygen evolving complex. Biochemistry 45:3107–3115

    Article  PubMed  CAS  Google Scholar 

  • Popelkova H, Boswell N, Yocum C (2011) Probing the topography of the photosystem II oxygen evolving complex: PsbO is required for efficient calcium protection of the manganese cluster against dark-inhibition by an artificial reductant. Photosynth Res 110:111–121

    Article  PubMed  CAS  Google Scholar 

  • Renger G (2012) Photosynthetic water splitting: apparatus and mechanism. In: Eaton-Rye JJ, Tripathy BC, Sharkey TD (eds) Photosynthesis: plastid biology, energy conversion and carbon assimilation, advances in photosynthesis and respiration, vol 34. Springer, Dordrecht, pp 359–411

    Google Scholar 

  • Rivalta I, Amin M, Luber S, Vassiliev S, Pokhrel R, Umena Y, Kawakami K, Shen JR, Kamiya N, Bruce D, Brudvig GW, Gunner MR, Batista VS (2011) Structural–functional role of chloride in photosystem II. Biochemistry 50:6312–6315

    Article  PubMed  CAS  Google Scholar 

  • Rutherford AW, Boussac A (2004) Water photolysis in biology. Science 303:1782–1784

    Article  PubMed  CAS  Google Scholar 

  • Sauer K, Yachandra VK, Britt RD, Klein MP (1992) The photosynthetic water oxidation complex studied by EPR and X-ray absorption spectroscopy. In: Pecoraro VL (ed) Manganese redox enzymes. VCH, New York

    Google Scholar 

  • Shutova T, Nikitina J, Deikus G, Andersson B, Klimov V, Samuelsson G (2005) Structural dynamics of the manganese-stabilizing protein effect of pH, calcium, and manganese. Biochemistry 44:15182–15192

    Article  PubMed  CAS  Google Scholar 

  • Siegbahn PE (2009) Structures and energetics for O2 formation in photosystem II. Acc Chem Res 42:1871–1880

    Article  PubMed  CAS  Google Scholar 

  • Umena Y, Kawakami K, Shen JR, Kamiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Ǻ. Nature 473:55–60

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Kim SG, Kim ST, Agrawal GK, Rakwal R, Kang KY (2011) Biotic stress-responsive rice proteome: an overview. J Plant Biol 54:219–226

    Article  Google Scholar 

  • Wydrzynski TJ, Satoh K (eds) (2005) Photosystem II: the light-driven water: plastoquinone oxidoreductase, advances in photosynthesis and respiration, vol 22. Springer, Dordrecht

    Google Scholar 

  • Yano J, Kern J, Irrgang KD, Latimer MJ, Bergmann U, Glatzel P, Pushkar Y, Biesiadka J, Loll B, Sauer K, Messinger J, Zouni A, Yachandra VK (2005) X-ray damage to the Mn4Ca complex in single crystals of photosystem II: a case study for metalloprotein crystallography. Proc Natl Acad Sci USA 102:12047–12052

    Article  PubMed  CAS  Google Scholar 

  • Yano J, Kern J, Sauer K, Latimer MJ, Pushkar Y, Biesiadka J, Loll B, Saenger W, Messinger J, Zouni A, Yachandra VK (2006) Where water is oxidized to dioxygen: structure of the photosynthetic Mn4Ca cluster. Science 314:821–825

    Article  PubMed  CAS  Google Scholar 

  • Zouni A, Witt HT, Kern J, Fromme P, Krauss N, Saenger W (2001) Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution. Nature 409:739–743

    Article  PubMed  CAS  Google Scholar 

  • Zulfugarov I, Tovuu A, Kim J-H, Lee C-H (2011) Detection of reactive oxygen species in higher plants. J Plant Biol 54:351–357

    Article  CAS  Google Scholar 

Download references

Acknowledgments

M. M. Najafpour and A. Nemati Moghaddam are grateful to the Institute for Advanced Studies in Basic Sciences for financial support. This study was also supported by Grants from the Russian Foundation for Basic Research (Nos: 11-04-01389a, 11-04-92690a, and 12-04-92101a), by BMBF (No: 8125) Bilateral Cooperation between Germany and Russia, and by Brain Pool Program of the Ministry of Education Science and Technology (MEST) and the Korean Federation of Science and Technology (KOFST) to SIA. C–H Lee is grateful for the support by the National Research Foundation (NRF) of Korea grant funded by MEST (No. 2012-0004968).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad Mahdi Najafpour or Suleyman I. Allakhverdiev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Najafpour, M.M., Moghaddam, A.N., Yang, Y.N. et al. Biological water-oxidizing complex: a nano-sized manganese–calcium oxide in a protein environment. Photosynth Res 114, 1–13 (2012). https://doi.org/10.1007/s11120-012-9778-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-012-9778-x

Keywords

Navigation