Skip to main content
Log in

Vertical distribution and characterization of aerobic phototrophic bacteria at the Juan de Fuca Ridge in the Pacific Ocean

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The vertical distribution of culturable anoxygenic phototrophic bacteria was investigated at five sites at or near the Juan de Fuca Ridge in the Pacific Ocean. Twelve similar strains of obligately aerobic phototrophic bacteria were isolated in pure culture, from depths ranging from 500 to 2,379 m below the surface. These strains appear morphologically, physiologically, biochemically, and phylogenetically similar to Citromicrobium bathyomarinum strain JF-1, a bacterium previously isolated from hydrothermal vent plume waters. Only one aerobic phototrophic strain was isolated from surface waters. This strain is morphologically and physiologically distinct from the strains isolated at deeper sampling locations, and phylogenetic analysis indicates that it is most closely related to the genus Erythrobacter. Phototrophs were cultivated from three water casts taken above vents but not from two casts taken away from active vent sites. No culturable anaerobic anoxygenic phototrophs were detected. The photosynthetic apparatus was investigated in strain JF-1 and contains light-harvesting I and reaction center complexes, which are functional under aerobic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alric J (2005) In vivo carotenoid triplet formation in response to excess light: supramolecular photoprotection mechanism revisited. Photosynth Res 83:335–341. doi:10.1007/s11120-005-1105-3

    Article  PubMed  CAS  Google Scholar 

  • Beatty JT (2002) On the natural selection and evolution of the aerobic phototrophic bacteria. Photosynth Res 73:109–114. doi:10.1023/A:1020493518379

    Article  PubMed  CAS  Google Scholar 

  • Beatty JT, Overmann J, Lince MT, Manske AK, Lang AS, Blankenship RE et al (2005) An obligately photosynthetic bacterial anaerobe from a deep-sea hydrothermal vent. Proc Natl Acad Sci USA 102:9306–9310. doi:10.1073/pnas.0503674102

    Article  PubMed  CAS  Google Scholar 

  • Delaney JR, Robigou V, McDuff RE, Tivey MK (1992) Geology of a vigorous hydrothermal system on the Endeavour Segment, Juan de Fuca Ridge. J Geophys Res 97:19663–19682. doi:10.1029/92JB00174

    Article  Google Scholar 

  • Drews G (1983) Mikrobiologishes praktikum. Springer, Berlin

    Google Scholar 

  • Gerloff GC, Fitzgerald GP, Skoog F (1950) The isolation, purification, and culture of blue-green algae. Am J Bot 37:216–218. doi:10.2307/2437904

    Article  CAS  Google Scholar 

  • Goericke R (2002) Bacteriochlorophyll a in the ocean: is anoxygenic bacterial photosynthesis important? Limnol Oceanogr 47:290–295

    CAS  Google Scholar 

  • Holmstrom C, Kjelleberg S (1999) Marine Pseudoalteromonas species are associated with higher organisms and produce biologically active extracellular agents. FEMS Microbiol Ecol 30:285–293

    PubMed  CAS  Google Scholar 

  • Kellenberger E, Ryter A, Sechaud J (1958) Electron microscope study of DNA-containing plasms. J Biophys Biochem Cytol 4:671–678

    PubMed  CAS  Google Scholar 

  • Koblizek M, Beja O, Bidigare RR, Christensen S, Benitez-Nelson B, Vetriani C et al (2003) Isolation and characterization of Erythrobacter sp. strains from the upper ocean. Arch Microbiol 180:327–338. doi:10.1007/s00203-003-0596-6

    Article  PubMed  CAS  Google Scholar 

  • Kolber ZS, Van Dover CL, Niederman RA, Falkowski PG (2000) Bacterial photosynthesis in surface waters of the open ocean. Nature 407:177–179. doi:10.1038/35025044

    Article  PubMed  CAS  Google Scholar 

  • Kolber ZS, Plumley FG, Lang AS, Beatty JT, Blankenship RE, Van Dover CL et al (2001) Contribution of aerobic photoheterotrophic bacteria to the carbon cycle in the ocean. Science 292:2492–2495. doi:10.1126/science.1059707

    Article  PubMed  CAS  Google Scholar 

  • Nisbet EG, Cann JR, Van Dover CL (1995) Origins of photosynthesis. Nature 373:479–480. doi:10.1038/373479a0

    Article  CAS  Google Scholar 

  • Oz A, Sabehi G, Koblizek M, Massana R, Beja O (2005) Roseobacter-like bacteria in Red and Mediterranean Sea aerobic anoxygenic photosynthetic populations. Appl Environ Microbiol 71:344–353. doi:10.1128/AEM.71.1.344-353.2005

    Article  PubMed  CAS  Google Scholar 

  • Pfennig N (1978a) General physiology and ecology of photosynthetic bacteria. In: Clayton R, Sistrom W (eds) The photosynthetic bacteria. Plenum Press, NY, pp 3–18

  • Pfennig N (1978b) Rhodocyclus purpureus gen. nov. and sp. nov., a ring-shaped vitamin B12-requiring member of the family Rhodospirillaceae. Int J Syst Bacteriol 28:283–288

    CAS  Google Scholar 

  • Rainey FA, Ward-Rainey N, Kroppenstedt RM, Stackebrandt E (1996) The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol 46:1088–1092

    PubMed  CAS  Google Scholar 

  • Rathgeber C, Beatty JT, Yurkov V (2004) Aerobic phototrophic bacteria: new evidence for the diversity, ecological importance and applied potential of this previously overlooked group. Photosynth Res 81:113–128. doi:10.1023/B:PRES.0000035036.49977.bc

    Article  CAS  Google Scholar 

  • Rathgeber C, Yurkova N, Stackebrandt E, Schumann P, Beatty JT, Yurkov V (2005) Roseicyclus mahoneyensis gen. nov., sp. nov., an aerobic phototrophic bacterium isolated from a meromictic lake. Int J Syst Evol Microbiol 55:1597–1603. doi:10.1099/ijs.0.63195-0

    Article  PubMed  CAS  Google Scholar 

  • Schwalbach MS, Fuhrman JA (2005) Wide-ranging abundances of aerobic anoxygenic phototrophic bacteria in the world ocean revealed by epifluorescence microscopy and quantitative PCR. Limnol Oceanogr 50:620–628

    CAS  Google Scholar 

  • Shiba T, Simidu U (1982) Erythrobacter longus gen. nov., sp. nov., an aerobic bacterium which contains bacteriochlorophyll a. Int J Syst Bacteriol 32:211–217

    Google Scholar 

  • Shiba T, Simidu U, Taga N (1979) Distribution of aerobic bacteria which contain bacteriochlorophyll a. Appl Environ Microbiol 38:43–45

    PubMed  CAS  Google Scholar 

  • Shopes RJ, Holten D, Levine LMA, Wright CA (1987) Kinetics of oxidation of the bound cytochromes in reaction centers from Rhodopseudomonas viridis. Photosynth Res 12:165–180. doi:10.1007/BF00047946

    Article  CAS  Google Scholar 

  • Van Dover CL, Reynolds GT, Chave AD, Tyson JA (1996) Light at deep-sea hydrothermal vents. Geophys Res Lett 23:2049–2052. doi:10.1029/96GL02151

    Article  Google Scholar 

  • Yurkov V, Beatty JT (1998a) Aerobic anoxygenic phototrophic bacteria. Microbiol Mol Biol Rev 62:695–724

    PubMed  CAS  Google Scholar 

  • Yurkov V, Beatty JT (1998b) Isolation of aerobic anoxygenic photosynthetic bacteria from black smoker plume waters of the Juan de Fuca Ridge in the Pacific Ocean. Appl Environ Microbiol 64:337–341

    PubMed  CAS  Google Scholar 

  • Yurkov VV, Csotonyi JT (2003) Aerobic anoxygenic phototrophs and heavy metalloid reducers from extreme environments. In: Pandalai SG (ed) Recent research developments in bacteriology. Transworld Research Network, Trivandrum, pp 247–300

    Google Scholar 

  • Yurkov V, Van Gemerden H (1993a) Abundance and salt tolerance of obligately aerobic, phototrophic bacteria in a microbial mat. Neth J Sea Res 31:57–62. doi:10.1016/0077-7579(93)90017-M

    Article  Google Scholar 

  • Yurkov V, Van Gemerden H (1993b) Impact of light/dark regime on growth rate, biomass formation and bacteriochlorophyll synthesis in Erythromicrobium hydrolyticum. Arch Microbiol 159:84–89. doi:10.1007/BF00244268

    Article  CAS  Google Scholar 

  • Yurkov V, Gad’on N, Drews G (1993) The major part of polar carotenoids of the aerobic bacteria Roseococcus thiosulfatophilus, RB3 and Erythromicrobium ramosusm, E5 is not bound to the bacteriochlorophyll a complexes of the photosynthetic apparatus. Arch Microbiol 160:372–376. doi:10.1007/BF00252223

    Article  CAS  Google Scholar 

  • Yurkov V, Gad’on N, Angerhofer A, Drews G (1994a) Light-harvesting complexes of aerobic bacteriochlorophyll-containing bacteria Roseococcus thiosulfatophilus, RB3 and Erythromicrobium ramosum, E5 and the transfer of excitation energy from carotenoids to bacteriochlorophyll. Z Naturforsch Teil C 49:579–586

    CAS  Google Scholar 

  • Yurkov V, Stackebrandt E, Holmes A, Fuerst JA, Hugenholtz P, Golecki J et al (1994b) Phylogenetic positions of novel aerobic, bacteriochlorophyll a-containing bacteria and description of Roseococcus thiosulfatophilus gen. nov., sp. nov., Erythromicrobium ramosum gen. nov., sp. nov., and Erythrobacter litoralis sp. nov. Int J Syst Bacteriol 44:427–434

    Article  PubMed  CAS  Google Scholar 

  • Yurkov V, Menin L, Schoepp B, Verméglio A (1998a) Purification and characterization of reaction centers from the obligate aerobic phototrophic bacteria Erythrobacter litoralis, Erythromonas ursincola and Sandaracinobacter sibiricus. Photosynth Res 57:129–138. doi:10.1023/A:1006087403692

    Article  CAS  Google Scholar 

  • Yurkov V, Schoepp B, Verméglio A (1998b) Photoinduced electron transfer and cytochrome content in obligate aerobic phototrophic bacteria from genera Erythromicrobium, Sandaracinobacter, Erythromonas, Roseococcus and Erythrobacter. Photosynth Res 57:117–128. doi:10.1023/A:1006097120530

    Article  CAS  Google Scholar 

  • Yurkov V, Krieger S, Stackebrandt E, Beatty JT (1999) Citromicrobium bathyomarinum, a novel aerobic bacterium isolated from deep-sea hydrothermal vent plume waters that contains photosynthetic pigment-protein complexes. J Bacteriol 181:4517–4525

    PubMed  CAS  Google Scholar 

  • Yurkova N, Rathgeber C, Swiderski J, Stackebrandt E, Beatty JT, Hall KJ et al (2002) Diversity, distribution and physiology of the aerobic phototrophic bacteria in the mixolimnion of a meromictic lake. FEMS Microbiol Ecol 40:191–220. doi:10.1111/j.1574-6941.2002.tb00952.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by grants from the NSERC (Canada) to V.Y. and J.T.B. Funds in support of the field sampling program were obtained from grants to G.F.P., R.E.B. and C.L.V.D. from the NSF RIDGE Program, NASA Exobiology, and NASA Astrobiology. CEA (France) provided financial support to C.R. during his research visit to Cadarache. We are grateful to the Captain and crew of the R/V Atlantis and to the Expedition Leader and crew of the DSRV Alvin for their assistance in collecting samples. We thank Drs. P. Falkowski and Z. Kolber for discussions and suggestions during project development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Yurkov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rathgeber, C., Lince, M.T., Alric, J. et al. Vertical distribution and characterization of aerobic phototrophic bacteria at the Juan de Fuca Ridge in the Pacific Ocean. Photosynth Res 97, 235–244 (2008). https://doi.org/10.1007/s11120-008-9332-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-008-9332-z

Keywords

Navigation