Skip to main content
Log in

Boundary Harnack Principle and Martin Boundary at Infinity for Subordinate Brownian Motions

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

In this paper we study the Martin boundary of unbounded open sets at infinity for a large class of subordinate Brownian motions. We first prove that, for such subordinate Brownian motions, the uniform boundary Harnack principle at infinity holds for arbitrary unbounded open sets. Then we introduce the notion of κ-fatness at infinity for open sets and show that the Martin boundary at infinity of any such open set consists of exactly one point and that point is a minimal Martin boundary point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blumenthal, R.M., Getoor, R.K.: Markov Processes and Potential Theory. Academic, New York (1968)

    MATH  Google Scholar 

  2. Bogdan, K.: The boundary Harnack principle for the fractional Laplacian. Stud. Math. 123(1), 43–80 (1997)

    MATH  MathSciNet  Google Scholar 

  3. Bogdan, K., Byczkowski, T., Kulczycki, T., Ryznar, M., Song, R., Vondraček, Z.: Potential analysis of stable processes and its extensions. In: Lecture Notes in Mathematics, vol. 1980. Springer, Berlin (2009)

    Google Scholar 

  4. Bogdan, K., Kulczycki, T., Kwaśnicki, M.: Estimates and structure of α-harmonic functions. Probab. Theory Relat. Fields 140, 345–381 (2008)

    Article  MATH  Google Scholar 

  5. Bogdan, K., Kumagai, T., Kwa´snicki, M.: Boundary Harnack inequality for Markov processes with jumps. Trans. Am.Math. Soc. (2013). http://www.ams.org/cgi-bin/mstrack/accepted_papers/tran, arXiv:1207.3160

  6. Dynkin, E.B.: Markov Processes, vol. I. Academic, New York (1965)

    Book  MATH  Google Scholar 

  7. Ikeda, N., Watanabe, S.: On some relations between the harmonic measure and the Lévy measure for a certain class of Markov processes. J. Math. Kyoto Univ. 2, 79–95 (1962)

    MATH  MathSciNet  Google Scholar 

  8. Kim, P., Mimica, A.: Green function estimates for subordinate Brownian motions: stable and beyond. Trans. Am. Math. Soc. (2013). http://www.ams.org/cgi-bin/mstrack/accepted_papers/tran, arXiv:1208.5112

  9. Kim, P., Song, R., Vondraček, Z.: Boundary Harnack principle for subordinate Brownian motion. Stoch. Process. Appl. 119, 1601–1631 (2009)

    Article  MATH  Google Scholar 

  10. Kim, P., Song, R., Vondraček, Z.: Potential Theory of Subordinated Brownian Motions Revisited. Stochastic Analysis and Applications to Finance, Essays in Honour of Jia-an Yan. Interdisciplinary Mathematical Sciences, vol. 13, pp. 243–290. World Scientific (2012)

  11. Kim, P., Song, R., Vondraček, Z.: Minimal thinness for subordinate Brownian motion in half space. Ann. Inst. Fourier 62(3), 1045–1080 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kim, P., Song, R., Vondraček, Z.: Uniform boundary Harnack principle for rotationally symmetric Lévy processes in general open sets. Sci. China Math. 55, 2193–2416 (2012)

    Article  Google Scholar 

  13. Kim, P., Song, R., Vondraček, Z.: Potential theory of subordinate Brownian motions with Gaussian components. Stoch. Process. Appl. 123(3), 764–795 (2013)

    Article  MATH  Google Scholar 

  14. Kim, P., Song, R., Vondraček, Z.: Global uniform boundary Harnack principle with explicit decay rate and its application. Stoch. Process. Appl. 124, 235–267 (2014)

    Article  MATH  Google Scholar 

  15. Kunita, H., Watanabe, T.: Markov processes and Martin boundaries I. Ill. J. Math. 9(3), 485–526 (1965)

    MATH  MathSciNet  Google Scholar 

  16. Kwaśnicki, M.: Intrinsic ultracontractivity for stable semigroups on unbounded open sets. Potential Anal. 31, 57–77 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. Millar, P.W.: First passage distributions of processes with independent increments. Ann. Probab. 3, 215–233 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  18. Sato, K.-I.: Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  19. Schilling, R.L., Song, R., Vondraček, Z.: Bernstein functions: theory and applications, 2nd edn. In: de Gruyter Studies in Mathematics, vol. 37. Walter de Gruyter, Berlin (2012)

    Google Scholar 

  20. Silverstein, M.L.: Classification of coharmonic and coinvariant functions for a Lévy process. Ann. Probab. 8, 539–575 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  21. Song, R., Wu, J.: Boundary Harnack principle for symmetric stable processes. J. Funct. Anal. 168(2), 403–427 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  22. Sztonyk, P.: On harmonic measure for Lévy processes. Probab. Math. Stat. 20, 383–390 (2000)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoran Vondraček.

Additional information

P. Kim was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government(MEST) (2013004822).

R. Song was supported in part by a grant from the Simons Foundation (208236).

Z. Vondraček was supported in part by the MZOS grant 037-0372790-2801.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, P., Song, R. & Vondraček, Z. Boundary Harnack Principle and Martin Boundary at Infinity for Subordinate Brownian Motions. Potential Anal 41, 407–441 (2014). https://doi.org/10.1007/s11118-013-9375-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-013-9375-4

Keywords

Mathematics Subject Classifications (2010)

Navigation