, Volume 39, Issue 2, pp 409-432
Date: 06 Jul 2011

Cycling to work in 90 large American cities: new evidence on the role of bike paths and lanes

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

This article analyzes the variation in bike commuting in large American cities, with a focus on assessing the influence of bike paths and lanes, which have been the main approach to increasing cycling in the USA. To examine the role of cycling facilities, we used a newly assembled dataset on the length of bike lanes and paths in 2008 collected directly from 90 of the 100 largest U.S. cities. Pearson’s correlation, bivariate quartile analysis, and two different types of regressions were used to measure the relationship between cycling levels and bikeways, as well as other explanatory and control variables. Ordinary Least Squares and Binary Logit Proportions regressions confirm that cities with a greater supply of bike paths and lanes have significantly higher bike commute rates—even when controlling for land use, climate, socioeconomic factors, gasoline prices, public transport supply, and cycling safety. Standard tests indicate that the models are a good fit, with R 2 ranging between 0.60 and 0.65. Computed coefficients have the expected signs for all variables in the various regression models, but not all are statistically significant. Estimated elasticities indicate that both off-street paths and on-street lanes have a similar positive association with bike commute rates in U.S. cities. Our results are consistent with previous research on the importance of separate cycling facilities and provide additional information about the potentially different role of paths vs. lanes. Our analysis also revealed that cities with safer cycling, lower auto ownership, more students, less sprawl, and higher gasoline prices had more cycling to work. By comparison, annual precipitation, the number of cold and hot days, and public transport supply were not statistically significant predictors of bike commuting in large cities.