Skip to main content

Advertisement

Log in

Carbon allocation in Larrea tridentata plant-soil systems as affected by elevated soil moisture and N availability

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and Aims

Global change will likely express itself in southwestern United States arid lands through changes in amounts and timing of precipitation in response to elevated CO2 concentrations. In addition, increased nitrogen (N) deposition may occur due to increased urban development. This study addressed the effects of water and N availability on C allocation in arid land soil-plant systems.

Methods

Columns filled with Mojave Desert topsoil containing Larrea tridentata seedlings with two treatment levels each of N and soil moisture were labeled by exposure to 13C-enriched CO2.

Results

Increased soil moisture increased plant biomass, total 13C uptake, 13C levels in leaves, soil organic matter, and soil respiration, decreased relative C allocation to stems but increased allocation to soil organic matter. Increased soil N availability increased N uptake but decreased C allocation to soil respiration presumably due to decreased substrate supply for microbes. There was no detectable label in carbonate C, suggesting that this pool does not significantly contribute to ecosystem C fluxes.

Conclusions

Our study indicates that increased water availability causes increased C uptake with increased C allocation to soil organic matter in Larrea tridentata-dominated communities while increased N deposition will have a minimal impact on C sequestration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Archer SR, Predick KI (2008) Climate change and ecosystems of the Southwestern USA. Rangelands 30:23–28

    Article  Google Scholar 

  • Austin AT, Yahdjian L, Stark JM et al (2004) Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia 141:221–235

    Article  PubMed  Google Scholar 

  • Barker DH, Vanier C, Naumburg E, Charlet TN, Nielsen KM, Newingham BA, Smith SD (2006) Enhanced monsoon precipitation and nitrogen deposition affect leaf traits and photosynthesis differently in spring and summer in the desert shrub Larrea tridentata. New Phytol 169:799–808

    Article  PubMed  CAS  Google Scholar 

  • BassiriRad H, Tremmel DC, Virginia RA, Reynolds JF, de Soyza AG, Brunell MH (1999) Short-term patterns in water and nitrogen acquisistion by two desert shrubs following a simulated summer rain. Plant Ecol 145:27–36

    Article  Google Scholar 

  • Billings SA, Schaeffer SM, Evans RD (2004) Soil microbial activity and N availability with elevated CO2 in Mojave Desert soils. Glob Biogeochem Cycles 18, GB1011. doi:10.1029/2003GB002137

    Article  CAS  Google Scholar 

  • Burton AJ, Pregitzer KS, Crawford JN, Zogg GP, Zak DR (2004) Simulated chronic NO3 deposition reduces soil respiration in northern hardwood forests. Glob Chang Biol 10:1080–1091

    Article  Google Scholar 

  • Bytnerowicz A, Fenn ME (1996) Nitrogen deposition in California forests: a review. Environ Pollut 92:127–146

    Article  PubMed  CAS  Google Scholar 

  • Cable JM, Ogle K, Lucas RW et al (2011) The temperature responses of soil respiration in deserts: a seven desert synthesis. Biogeochemistry 103:71–90

    Article  Google Scholar 

  • Caldwell MM, Manwaring JH, Jackson RB (1991) Exploitation of phosphate from fertile soil microsites by three Great Basin perennials when in competition. Funct Ecol 5:757–764

    Article  Google Scholar 

  • Cayan DR, Das T, Pierce DW, Barnett TP, Tyree M, Gershunova A (2010) Future dryness in the southwest US and the hydrology of the early 21st century drought. Proc Natl Acad Sci U S A 107:21271–21276

    Article  PubMed Central  PubMed  Google Scholar 

  • Clark NM, Apple ME, Nowak RS (2010) The effects of elevated CO2 on root respiration rates of two Mojave Desert shrubs. Glob Chang Biol 16:1566–1575

    Article  Google Scholar 

  • Deng Q, Zhou G, Liu J, Liu S, Duan H, Zhang D (2010) Responses of soil respiration to elevated carbon dioxide and nitrogen addition in young subtropical forest ecosystems in China. Biogeosciences 7:315–328

    Article  CAS  Google Scholar 

  • Dijkstra FA, Cheng W (2007) Interactions between soil and tree roots accelerate long-term soil carbon decomposition. Ecol Lett 10:1046–1053

    Article  PubMed  Google Scholar 

  • Eissenstat DM, Caldwell MM (1988) Seasonal timing of root growth in favorable microsites. Ecology 69:692–695

    Article  Google Scholar 

  • Emmerich WE (2003) Carbon dioxide fluxes in a semiarid environment with high carbonate soils. Agric For Meteorol 116:91–102

    Article  Google Scholar 

  • Eswaran H, Reich PF, Kimble JM, Beinroth FH, Padmanabhan E, Moncharoen P (2000) Global carbon sinks. In: Lal R, Kimble JM, Eswaran H, Stewart BA (eds) Global climate change and pedogenic carbonates. CRC Press, Boca Raton, pp 15–26

    Google Scholar 

  • Fawcett PJ, Werne JP, Anderson RS et al (2011) Extended megadroughts in the southwestern United States during Pleistocene interglacials. Nature 470:518–521

    Article  PubMed  CAS  Google Scholar 

  • Fenn ME, Haeuber R, Tonnesen GS et al (2003) Nitrogen emissions, deposition, and monitoring in the western United States. Bioscience 53:391–403

    Article  Google Scholar 

  • Ferguson SD, Nowak RS (2011) Transitory effects of elevated atmospheric CO2 on fine root dynamics in an arid ecosystem do not increase long-term soil carbon input from fine root litter. New Phytol 190:953–967

    Article  PubMed  Google Scholar 

  • Friggens MM, Warwell MV, Chambers JC, Kitche SG (2012) Modeling and predicting vegetation response of western U.S.A. grasslands, shrublands, and deserts to climate change. In: Finch D (ed) Climate change in grasslands, shrublands, and deserts of the interior American West: A review and needs assessment. Gen. Tech. Rep. RMRS-GTR-285. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fort Collins, pp 1–20

    Google Scholar 

  • Gebauer RLE, Ehleringer JR (2002) Interspecific competition and resource pulse utilization in a cold desert community. Ecology 83:2602–2616

    Article  Google Scholar 

  • Gorissen A, Kuikman PJ, van de Beek H (1995) Carbon allocation and water use in juvenile Douglas fir under elevated CO2. New Phytol 129:275–282

    Article  Google Scholar 

  • Hamerlynck EP, McAuliffe JR, Smith SD (2000) Effects of surface and sub-surface soil horizons on the seasonal performance of Larrea tridentata (creosotebush). Funct Ecol 14:596–606

    Article  Google Scholar 

  • Holmes C (2009) Effects of three global climate change factors on soil water and sap flow of Larrea tridentata in the Mojave Desert. University of Nevada, Reno, Dissertation

    Google Scholar 

  • Housman DC, Naumburg E, Huxman TE, Charlet TN, Nowak RS, Smith SD (2006) Increases in desert shrub productivity under elevated carbon dioxide vary with water availability. Ecosystems 9:374–385

    Article  Google Scholar 

  • Hunt HW, Elliott ET, Detling JK, Morgan JA, Chen DX (1996) Responses of a C3 and C4 perennial grass to elevated CO2 and climate change. Glob Chang Biol 2:35–47

    Article  Google Scholar 

  • Huxman TE, Snyder KA, Tissue D et al (2004) Precipitation pulses and carbon fluxes in semiarid and arid ecosystems. Oecologia 141:254–268

    PubMed  Google Scholar 

  • Jackson RB, Caldwell MM (1989) The timing and degree of root proliferation in fertile-soil microsites for three cold-desert perennials. Oecologia 81:149–153

    Google Scholar 

  • Janssens I, Dieleman W, Luyssaert S et al (2010) Reduction of forest soil respiration in response to nitrogen deposition. Nat Geosci 3:315–322

    Article  CAS  Google Scholar 

  • Jasoni RL, Smith SD, Arnone JA III (2005) Net ecosystem CO2 exchange in Mojave Desert shrublands during the eighth year of exposure to elevated CO2. Glob Chang Biol 11:749–756

    Article  Google Scholar 

  • Jin VL, Evans RD (2007) Elevated CO2 increases microbial carbon substrate use and N cycling in Mojave Desert soils. Glob Chang Biol 13:452–465

    Article  Google Scholar 

  • Kuzyakov Y, Shevtzova E, Pustovoytov K (2006) Carbonate re-crystallization in soil revealed by 14C labeling: Experiment, model and significance for paleo-environmental reconstructions. Geoderma 131:45–58

    Article  CAS  Google Scholar 

  • Lal R, Kimble JM (2000) Inorganic carbon and the global C cycle: Research and development priorities. In: Lal R, Kimble JM, Eswaran H, Stewart BA (eds) Global climate change and pedogenic carbonates. CRC Press, Boca Raton, pp 291–302

    Google Scholar 

  • Lapenis AG, Lawrence GB, Bailey SW, Aparin BF, Shiklomanov AI, Speranskaya NA (2008) Climatically driven loss of calcium in steppe soil as a sink for atmospheric carbon. Glob Biogeochem Cycles 22, GB2010

    Article  CAS  Google Scholar 

  • LeBauer DS, Treseder KK (2008) Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89:371–379

    Article  PubMed  Google Scholar 

  • Li X, Zhang P, Su YG, Jia RL (2012) Carbon fixation by biological soil crusts following revegetation of sand dunes in arid desert regions of China: A four-year field study. Catena 97:119–126

    Article  CAS  Google Scholar 

  • Marion GM, Verburg PSJ, McDonald EV, Arnone JA III (2008) Modeling salt movement through a Mojave Desert soil. J Arid Environ 72:1009–1030

    Article  Google Scholar 

  • Miller RE, Huenneke LF (1996) Size decline in Larrea tridentata (creosotebush). Southwest Nat 41:248–250

    Google Scholar 

  • Newingham BA, Vanier CH, Charlet TN, Smith SD (2012) Effects of enhanced summer monsoons, nitrogen deposition and soil disturbance on Larrea tridentata productivity and resulting herbivory in the Mojave Desert. J Arid Environ 87:19–28

    Article  Google Scholar 

  • Newingham BA, Vanier CH, Charlet TN, Ogle K, Smith SD, Nowak RS (2013) No cumulative effect of ten years of elevated [CO2] on perennial plant biomass components in the Mojave Desert. Glob Chang Biol. doi:10.1111/gcb.12177

    PubMed  Google Scholar 

  • Notaro M, Holman K, Zarrin A, Fluck E, Vavrus S, Bennington V (2012) Influence of the Laurentian Great Lakes on Regional Climate. J Clim. doi:10.1175/JCLI-D-12-00140.1

    Google Scholar 

  • Noy-Meir I (1973) Desert ecosystems: environment and producers. Annu Rev Ecol Syst 4:23–51

    Article  Google Scholar 

  • Phillips DL, Johnson MG, Tingey DT, Catricala CE, Hoyman TL, Nowak RS (2006) Effects of elevated CO2 on fine root dynamics in a Mojave Desert community: a FACE study. Glob Chang Biol 12:61–73

    Article  Google Scholar 

  • Poorter H, Nagel O (2000) The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: a quantitative review. Aust J Plant Physiol 27:595–607

    Article  CAS  Google Scholar 

  • Reynolds JF (2001) Desertification. In: Levin SA (ed) Encyclopedia of biodiversity. Academic Press, San Diego, pp 61–78

    Chapter  Google Scholar 

  • Reynolds JF, Virginia RA, Kemp PR, De Soyza AG, Tremmel DC (1999) Impact of drought on desert shrubs: Effects of seasonality and degree of resource island development. Ecol Monogr 69:69–106

    Article  Google Scholar 

  • Rundel PW, Gibson AC (1996) Ecological Communities and Processes in a Mojave Desert Ecosystem: Rock Valley. Cambridge University Press, Cambridge, UK, Nevada

    Book  Google Scholar 

  • Sangster A, Knight D, Farrell R, Bedard-Haughn A (2010) Repeat-pulse 13CO2 labeling of canola and field pea: implications for soil organic matter studies. Rapid Commun Mass Spectrom 24:2791–2798

    Article  PubMed  CAS  Google Scholar 

  • Schlesinger WH, Belnap J, Marion GM (2009) On carbon sequestration in desert ecosystems. Glob Chang Biol 15:1488–1490

    Article  Google Scholar 

  • Schwinning S, Davis K, Richardson L, Ehleringer JR (2002) Deuterium-enriched irrigation indicates different forms of rain use in shrub/grass species of the Colorado Plateau. Oecologia 130:345–355

    Article  Google Scholar 

  • Schwinning S, Starr BI, Ehleringer JR (2005a) Summer and winter drought in a cold desert ecosystem (Colorado Plateau) part I: effects on soil water and plant water uptake. J Arid Environ 60:547–566

    Article  Google Scholar 

  • Schwinning S, Starr BI, Ehleringer JR (2005b) Summer and winter drought in a cold desert ecosystem (Colorado Plateau) part II: effects on plant carbon assimilation and growth. J Arid Environ 61:61–78

    Article  Google Scholar 

  • Seager R, Ting M, Held I et al (2007) Model projections of an imminent transition to a more arid climate in southwestern North America. Science 316:1181–1184

    Article  PubMed  CAS  Google Scholar 

  • Serna-Perez A, Monger HC, Herrick JE, Murray L (2006) Carbon dioxide emissions from exhumed petrocalcic horizons. Soil Sci Soc Am J 70:795–805

    Article  CAS  Google Scholar 

  • Smith SD, Monson RK, Anderson JE (1997) Physiological ecology of North American desert plants. Springer, Berlin

    Book  Google Scholar 

  • Smith SD, Huxman TE, Zitzer SF et al (2000) Elevated CO2 increases productivity and invasive species success in an arid ecosystem. Nature 408:79–82

    Article  PubMed  CAS  Google Scholar 

  • Snyder KA, Donovan LA, James JJ, Tiller RL, Richards JJ (2004) Summer water pulses do not necessarily lead to canopy growth of Great Basin and Northern Mojave Desert shrubs. Oecologia 141:325–334

    Article  PubMed  CAS  Google Scholar 

  • Solomon S, Qin D, Manning M et al (2007) Technical summary. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 19–92

    Google Scholar 

  • Stevenson B, Verburg PSJ (2006) Effluxed CO2-13C from sterilized and unsterilized treatments of a calcareous soil. Soil Biol Biochem 38:1727–1733

    Article  CAS  Google Scholar 

  • Stone R (2008) Have desert researchers discovered a hidden loop in the Carbon cycle? Science 320:1409–1410

    Article  PubMed  CAS  Google Scholar 

  • Su YZ, Wang XF, Yang R, Lee J (2012) Characteristics of carbon flux in two biologically crusted soils in the Gurbantunggut Desert, Northwestern China. Catena 96:41–48

    Article  Google Scholar 

  • Verburg PSJ, Gorissen A, Arp WJ (1998) Carbon allocation and decomposition of root-derived organic matter in a plant-soil system of Calluna vulgaris as affected by elevated CO2. Soil Biol Biochem 30:1251–1258

    Article  CAS  Google Scholar 

  • Verburg PSJ, Cheng W, Johnson DW, Schorran DE (2004) Non-symbiotic nitrogen fixation in three-year-old Jeffrey pines and the role of elevated [CO2]. Can J For Res 34:1979–1984

    Article  Google Scholar 

  • Verburg PSJ, Young AC, Stevenson BA, Glanzmann I, Arnone JA III, Marion GM, Holmes C, Nowak RS (2013) Do increased summer precipitation and N deposition alter fine root dynamics in a Mojave Desert ecosystem? Glob Chang Biol 19:948–956

    Article  PubMed  Google Scholar 

  • Weltzin JF, Loik ME, Schwinning S et al (2003) Assessing the response of terrestrial ecosystems to potential changes in precipitation. Bioscience 53:941–952

    Article  Google Scholar 

  • Wohlfahrt G, Fenstermaker LF, Arnone JA III (2008) Large annual net ecosystem CO2 uptake of a Mojave Desert ecosystem. Glob Chang Biol 14:1475–1487

    Article  Google Scholar 

  • Xie J, Li Y, Zhai C, Li C, Lan Z (2009) CO2 absorption by alkaline soils and its implication to the global carbon cycle. Environ Geol 56:953–961

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded through a grant from the National Science Foundation (DEB-0212714). We acknowledge the help of D. Girard, A. Young, B. Coulombe, B. Reed and S. Uselman for technical assistance throughout the study, and R. Kreidberg for editorial assistance with the manuscript. We gratefully acknowledge constructive comments provided by two reviewers and the editor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul S. J. Verburg.

Additional information

Responsible Editor: Thom W. Kuyper

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verburg, P.S.J., Kapitzke, S.E., Stevenson, B.A. et al. Carbon allocation in Larrea tridentata plant-soil systems as affected by elevated soil moisture and N availability. Plant Soil 378, 227–238 (2014). https://doi.org/10.1007/s11104-013-2017-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-013-2017-1

Keywords

Navigation