Skip to main content
Log in

Modelling the environmental and soil factors that shape the niches of two common arbuscular mycorrhizal fungal families

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Arbuscular mycorrhizal (AM) fungi, a group of obligate symbionts of terrestrial plants, have a global distribution range. Yet, we lack concrete synthetic and empirical evidence that could reveal whether distinct ecological niches are distributed across Glomeromycota through determining linkages between environmental factors and the distribution of these taxa.

Methods

We have modelled the probability of occurrence of Gigasporaceae and Acaulosporaceae as a function of candidate environmental factors. These families are among the most common but non-ubiquitous taxa in AM-driven ecosystems. We have constructed our database using studies with a global scope and carried out our analysis through a logistic regression approach.

Results

The probability of occurrence of Acaulosporacae increased in acidic environments and soils with high bulk density. By contrast, a key factor that affected probability of occurrence of Gigasporaceae was precipitation.

Conclusions

Through the analysis of an unprecedentedly large amount of data we could infer that niche processes mediate occurrence of a group of fungi at scales broader than the local scale of the individual studies gathered in the analysed dataset. Knowledge of well-supported niche features could enhance discovery of new taxa of AM fungi, and would facilitate development of study designs with greater ecological realism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adler PB, HilleRisLambers J, Levine JM (2007) A niche for neutrality. Ecol Lett 10:95–104

    Article  PubMed  Google Scholar 

  • Amend AS, Seifert KA, Bruns TD (2010) Quantifying microbial communities with 454 pyrosequencing: does read abundance count? Mol Ecol 19:5555–5565

    Article  PubMed  CAS  Google Scholar 

  • Antunes PM, Koch AM, Morton JB, Rillig MC, Klironomos JN (2011) Evidence for functional divergence in arbuscular mycorrhizal fungi from contrasting climatic origins. New Phytol 189:507–514

    Article  PubMed  Google Scholar 

  • Avis PG, Branco S, Tang Y, Mueller GM (2010) Pooled samples bias fungal community descriptions. Mol Ecol Resour 10:135–141

    Article  PubMed  CAS  Google Scholar 

  • Baptista-Rosas PC, Hinojosa A, Riquelme M (2007) Ecological niche modeling of Coccidioides spp. in Western North American deserts. Ann NY Acad Sci 1111:35–46

    Article  PubMed  Google Scholar 

  • Bartolomeesteban H, Schenck N (1994) Spore germination and hyphal growth of arbuscular mycorrhizal fungi in relation to soil aluminum saturation. Mycologia 86:217–226

    Article  CAS  Google Scholar 

  • Barton K (2011) MuMIn: multi-model inference. R package version 1.0.0. URL http://CRAN.R-project.org/package=MuMIn [accessed 10 October 2011]

  • Bates D, Maechler M, Bolker B (2011) lme4: Linear mixed-effects models using S4 classes. R package version 0.999375-40. http://CRAN.R-project.org/package=lme4 [accessed 10 October 2011]

  • Brady NC, Weil RR (2008) The nature and properties of soils. Pearson Prentice Hall, New Jersey

    Google Scholar 

  • Brito D (2010) Overcoming the Linnean shortfall: data deficiency and biological survey priorities. Basic Appl Ecol 11:709–713

    Article  Google Scholar 

  • Burke DJ (2008) Effects of Alliaria petiolata (Garlic mustard; Brassicaceae) on mycorrhizal colonisation and community structure in three herbaceous plants in a mixed deciduous forest. Am J Bot 95:1416–1425

    Article  PubMed  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, Berlin

    Google Scholar 

  • Caruso T, Hempel S, Powell JR, Barto EK, Rillig MC (2012) Compositional divergence and convergence in arbuscular mycorrhizal fungal communities. Ecology 93:1115–1124

    Article  PubMed  CAS  Google Scholar 

  • Chase JM, Leibold MA (2003) Ecological niches: linking classical and contemporary approaches. Chicago University Press, Chicago

    Book  Google Scholar 

  • Clark RB (1997) Arbuscular mycorrhizal adaptation, spore germination, root colonization, and host plant growth and mineral acquisition at low pH. Plant Soil 192:15–22

    Article  CAS  Google Scholar 

  • Clark JS (2012) The coherence problem with the unified neutral theory of biodiversity. Trends Ecol Evol 27:198–202

    Article  PubMed  Google Scholar 

  • da Silva GA, Lumini E, Maia LC, Bonfante P, Bianciotto V (2006) Phylogenetic analysis of Glomeromycota by partial LSU rDNA sequences. Mycorrhiza 16:183–189

    Article  PubMed  CAS  Google Scholar 

  • Dickie I, FitzJohn R (2007) Using terminal restriction fragment length polymorphism (T-RFLP) to identify mycorrhizal fungi: a methods review. Mycorrhiza 17:259–270

    Article  PubMed  CAS  Google Scholar 

  • Dumbrell AJ, Nelson M, Helgason T, Dytham C, Fitter AH (2010a) Relative roles of niche and neutral processes in structuring a soil microbial community. ISME J 4:337–345

    Article  PubMed  Google Scholar 

  • Dumbrell AJ, Nelson M, Helgason T, Dytham C, Fitter AH (2010b) Idiosyncrasy and overdominance in the structure of natural communities of arbuscular mycorrhizal fungi: is there a role for stochastic processes? J Ecol 98:419–428

    Article  Google Scholar 

  • Egerton-Warburton LM, Allen EB (2000) Shifts in arbuscular mycorrhizal communities along an anthropogenic nitrogen deposition gradient. Ecol Appl 10:484–496

    Article  Google Scholar 

  • Egerton-Warburton LM, Johnson NC, Allen EB (2007) Mycorrhizal community dynamics following nitrogen fertilization: a cross-site test in five grasslands. Ecology 77:527–544

    Google Scholar 

  • Fitzsimons MS, Miller RM, Jastrow JD (2008) Scale dependent niche axes of arbuscular mycorrhizal fungi. Oecologia 158:117–127

    Article  PubMed  Google Scholar 

  • Gamper HA, Young JPW, Jones DL, Hodge A (2008) Real-time PCR and microscopy: are the two methods measuring the same unit of arbuscular mycorrhizal fungal abundance? Fungal Genet Biol 45:581–596

    Article  PubMed  CAS  Google Scholar 

  • Grime JP, Hodgson JG, Hunt R (1990) The abridged comparative plant ecology. Chapman & Hall, London

    Google Scholar 

  • Guo YJ, Ni Y, Raman H, Wilson BAL, Ash GJ, Wang AS, Li GD (2012) Arbuscular mycorrhizal fungal diversity in perennial pastures; responses to long-term lime application. Plant Soil 351:389–403

    Article  CAS  Google Scholar 

  • Hart MM, Reader RJ (2002) Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi. New Phytol 153:335–344

    Article  Google Scholar 

  • Helgason T, Fitter AH, Young JPW (1999) Molecular diversity of arbuscular mycorrhizal fungi colonizing Hyacinthoides non-scripta (bluebell) in a seminatural woodland. Mol Ecol 8:659–666

    Article  CAS  Google Scholar 

  • Helgason T, Merryweather JW, Young JPW, Fitter AH (2007) Specificity and resilience in the arbuscular mycorrhizal fungi of a natural woodland community. J Ecol 95:623–630

    Article  CAS  Google Scholar 

  • Hempel S, Renker C, Buscot F (2007) Differences in the species composition of arbuscular mycorrhizal fungi in spore, root and soil communities in a grassland ecosystem. Environ Microbiol 9:1930–1938

    Article  PubMed  CAS  Google Scholar 

  • Johnson JB, Omland KS (2004) Model selection in ecology and evolution. Trends Ecol and Evol 19:101–108

    Article  Google Scholar 

  • Johnson NC, Rowland DL, Corkidi L, Egerton-Warburton LM, Allen EB (2003) Nitrogen enrichment alters mycorrhizal allocation at five mesic to semiarid grasslands. Ecology 84:1895–1908

    Article  Google Scholar 

  • Klironomos JN, Hart MM (2002) Colonization of roots by arbuscular mycorrhizal fungi using different sources of inoculums. Mycorrhiza 12:181–184

    Article  PubMed  Google Scholar 

  • Klironomos J, Zobel M, Tibbett M, Stock WD, Rillig MC, Parrent JL, Moora M, Koch AM, Facelli JM, Facelli E, Dickie IA, Bever JD (2011) Forces that structure plant communities: quantifying the importance of the mycorrhizal symbiosis. New Phytol 189:366–370

    Article  PubMed  Google Scholar 

  • Lekberg Y, Koide RT, Rohr JR, Aldrich-Wolfe L, Morton JB (2007) Role of niche restrictions and dispersal in the composition of arbuscular mycorrhizal fungal communities. J Ecol 95:95–105

    Article  Google Scholar 

  • Lekberg Y, Schnoor T, Kjøller R, Gibbons SM, Hansen LH, Al-Soud WA, Sørensen SJ, Rosendahl S (2011) 454-sequencing reveals stochastic local reassembly and high disturbance tolerance within arbuscular mycorrhizal fungal communities. J Ecol 100:151–160

    Google Scholar 

  • MacKenzie DI, Nichols JD, Lachman GB, Droege S, Royle JA, Langtimm CA (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology 83:2248–2255

    Article  Google Scholar 

  • MacKenzie DI, Nichols JD, Hines JE, Knutson MG, Franklin AB (2003) Estimating site occupancy, colonization, and local extinction when a species is detected imperfectly. Ecology 84:2200–2207

    Article  Google Scholar 

  • MacKenzie DI, Nichols JD, Royle JA, Pollock KH, Bailey LL, Hines JE (2006) Occupancy estimation and modeling: inferring patterns and dynamics of species occurrence. Elsevier, San Diego

    Google Scholar 

  • Maherali H, Klironomos JN (2007) Influence of phylogeny on fungal community assembly and ecosystem functioning. Science 316:1746–1748

    Article  PubMed  CAS  Google Scholar 

  • Maherali H, Klironomos JN (2012) Phylogenetic and trait-based assembly of arbuscular mycorrhizal fungal communities. PlosOne 7:e36695

    CAS  Google Scholar 

  • Morton J, Msiska Z (2010) Phylogenies from genetic and morphological characters do not support a revision of Gigasporaceae (Glomeromycota) into four families and five genera. Mycorrhiza 20:483–496

    Article  PubMed  Google Scholar 

  • Nagekerke N (1991) A note on a general definition of the coefficient of determination. Biometrika 78:691–692

    Article  Google Scholar 

  • Nakagawa S, Freckleton RP (2011) Model averaging, missing data and multiple imputation: a case study for behavioural ecology. Behav Ecol Sociobiol 65:103–116

    Article  Google Scholar 

  • Oehl F, Sýkorová Z, Redecker D, Wiemken A, Sieverding E (2006) Acaulospora alpina, a new arbuscular mycorrhizal fungal species characteristic for high mountainous and alpine regions of the Swiss Alps. Mycologia 98:286–294

    Article  PubMed  Google Scholar 

  • Oehl F, de Souza FA, Sieverding E (2008) Revision of Scutellospora and description of five new genera and three new families in the arbuscular mycorrhiza forming Glomeromycetes. Mycotaxon 106:311–360

    Google Scholar 

  • Öpik M, Vanatoa A, Vanatoa E, Moora M, Davison J, Kalwij JM, Reier Ü, Zobel M (2010) The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol 188:223–241

    Article  PubMed  Google Scholar 

  • Ponce RA, Águeda B, Ágreda T, Modrego MP, Aldea J, Fernández-Toirán LM, Martínez-Pena F (2011) Rockroses and Boletus edulis ectomycorrhizal association: realized niche and climatic suitability in Spain. Fungal Ecol 4:224–232

    Article  Google Scholar 

  • Powell JR, Parrent JL, Hart MM, Klironomos JN, Rillig MC, Maherali H (2009) Phylogenetic trait conservatism and the evolution of functional trade-offs in arbuscular mycorrhizal fungi. Proc Biol Sci 276:4237–4245

    Article  PubMed  Google Scholar 

  • Powell JR, Monaghan MT, Öpik M, Rillig MC (2011) Evolutionary criteria outperform operational approaches in producing ecologically relevant fungal species inventories. Mol Ecol 20:655–666

    Article  PubMed  Google Scholar 

  • R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Reed KD, Meece JK, Archer JR, Peterson AT (2008) Ecologic niche modeling of Blastomyces dermatitidis in Wisconsin. PLoS One 3:e2034

    Article  PubMed  Google Scholar 

  • Rillig MC (2004) Arbuscular mycorrhizae and terrestrial ecosystem processes. Ecol Lett 7:740–754

    Article  Google Scholar 

  • Rosendahl S (2008) Communities, populations and individuals of arbuscular mycorrhizal fungi. New Phytol 178:253–266

    Article  PubMed  Google Scholar 

  • Saxton KE, Rawls WJ, Romberger JS, Papendick RI (1986) Estimating generalized soil-water characteristics from texture. Soil Sci Soc Am J 50:1031–1036

    Article  Google Scholar 

  • Schenck NC, Peréz Y (1990) Manual for the identification of VA mycorrhizal fungi, 3rd edn. Synergistic, Cainesville

  • Schüßler A, Walker C (2010) The Glomeromycota. A species list with new families and new genera. Oregon State University, Gloucester

    Google Scholar 

  • Schüßler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421

    Article  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd Edition. Academic Press

  • Soberon J (2007) Grinnellian and Eltonian niches and geographic distributions of species. Ecol Lett 10:1115–1123

    Article  PubMed  Google Scholar 

  • Sýkorová Z, Ineichen K, Wiemken A, Redecker D (2006) The cultivation bias: different communities of arbuscular mycorrhizal fungi detected in roots from the field, from bait plants transplanted to the field, and from a greenhouse trap experiment. Mycorrhiza 18:1–14

    Article  Google Scholar 

  • Wang B, Qiu Y-L (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363

    Article  PubMed  CAS  Google Scholar 

  • Zalar P, Novak M, de Hoog GS, Gunde-Cimerman N (2011) Dishwashers—a man-made ecological niche accommodating human opportunistic fungal pathogens. Fungal Biol 115:997–1007

    Article  PubMed  CAS  Google Scholar 

  • Zhu HH, Yao Q, Sun XT, Hu YL (2007) Colonization, ALP activity and plant growth promotion of native and exotic mycorrhizal fungi at low pH. Soil Biol Biochem 39:942–950

    Article  CAS  Google Scholar 

Download references

Acknowledgements

TC was supported by the Alexander von Humboldt Foundation. We thank Dr Jeff Powell and Dr Federico Luebert for comments on an earlier version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stavros D. Veresoglou.

Additional information

Responsible Editor: Duncan D. Cameron.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Esm 1

Sensitivity analysis and predictive models for Gigasporaceae and Acaulosporaceae (DOC 216 kb)

Esm 2

List of articles included in the database and their corresponding study codes. (PDF 89 kb)

Esm 3

Raw data used for the model construction (PDF 92 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veresoglou, S.D., Caruso, T. & Rillig, M.C. Modelling the environmental and soil factors that shape the niches of two common arbuscular mycorrhizal fungal families. Plant Soil 368, 507–518 (2013). https://doi.org/10.1007/s11104-012-1531-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-012-1531-x

Keywords

Navigation