Skip to main content
Log in

Annual variation in soil respiration and its component parts in two structurally contrasting woody savannas in Central Brazil

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Due to the high spatial and temporal variation in soil CO2 efflux, terrestrial carbon budgets rely on a detailed understanding of the drivers of soil respiration from a diverse range of ecosystems and climate zones. In this study we aim to evaluate the independent influence of vegetation structure and climate on soil CO2 efflux within cerrado ecosystems.

Methods

We examine the seasonal and diel variation of soil CO2 efflux, including its autotrophic and heterotrophic components, within two adjacent and structurally contrasting woody savannas in central Brazil.

Principle results

We found no significant difference in the annual soil CO2 efflux between the two stands (p = 0.53) despite a clear disparity in both LAI (p < 0.01) and leaf litterfall (p < 0.01). The mean annual loss of carbon from the soil was 17.32(±1.48) Mg C ha−1 of which approximately 63% was accounted for by autotrophic respiration. The relative contribution of autotrophic respiration varied seasonally between 55% in the wet season to 79% of the total soil CO2 efflux in the dry season. Furthermore, seasonal fluctuations of all the soil respiration components were strongly correlated with soil moisture (R 2 = 0.79–0.90, p < 0.01).

Conclusions

Across these two structurally distinct cerrado stands, seasonal variations in rainfall, was the main driver of soil CO2 efflux and its components. Consequently, soil respiration within these ecosystems is likely to be highly sensitive to any changes in seasonal precipitation patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Almagro M, López J, Querejeta JI, Martínez-Mena M (2009) Temperature dependence of soil CO2 efflux is strongly modulated by seasonal patterns of moisture availability in a Mediterranean ecosystem. Soil Biol Biochem 41:594–605

    Article  CAS  Google Scholar 

  • Andrews JA, Harrison KG, Matamala R, Schlesinger WH (1999) Separation of root respiration from total soil respiration using carbon-13 labeling during Free-Air Carbon Dioxide Enrichment (FACE). Soil Sci Soc Am J 63:1429–1435

    Article  CAS  Google Scholar 

  • Bhupinderpal S, Nordgren A, Löfvenius MO, Högberg MN, Mellander P-E, Högberg P (2003) Tree root and soil heterotrophic respiration as revealed by girdling of boreal Scots pine forest: extending observations beyond the first year. Plant Cell Environ 26:1287–1296

    Article  Google Scholar 

  • Bond-Lamberty B, Thomson A (2010) Temperature-associated increases in the global soil respiration record. Nature 464:579–582

    Article  PubMed  CAS  Google Scholar 

  • Boone RD, Nadelhoffer KJ, Canary JD, Kaye JP (1998) Roots exert a strong influence on the temperature sensitivityof soil respiration. Nature 396:570–572

    Article  CAS  Google Scholar 

  • Breda NJJ (2003) Ground-based measurements of leaf area index: a review of methods, instruments and current controversies. J Exp Bot 54:2403–2417

    Article  PubMed  CAS  Google Scholar 

  • Bunnell FL, Tait DEN, Flanagan PW, Van Clever K (1977) Microbial respiration and substrate weight loss–I: a general model of the influences of abiotic variables. Soil Biol Biochem 9:33–40

    Article  CAS  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York

    Google Scholar 

  • Chou WW, Silver WL, Jackson RD, Thompson AW, Allen-Diaz B (2008) The sensitivity of annual grassland carbon cycling to the quantity and timing of rainfall. Global Change Biol 14:1382–1394

    Article  Google Scholar 

  • Craine J, Wedin D, Chapin F (1999) Predominance of ecophysiological controls on soil CO2 flux in a Minnesota grassland. Plant Soil 207:77–86

    Article  Google Scholar 

  • Curiel-Yuste CJ, Janssens IA, Carrara A, Ceulemans R (2004) Annual Q10 of soil respiration reflects plant phenological patterns as well as temperature sensitivity. Global Change Biol 10:161–169

    Article  Google Scholar 

  • Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173

    Article  PubMed  CAS  Google Scholar 

  • Davidson EA, Belk E, Boone RD (1998) Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Global Change Biol 4:217–227

    Article  Google Scholar 

  • Davidson EA, Verchot LV, Cattânio JH, Ackerman IL, Carvalho JEM (2000) Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia. Biogeochemistry 48:53–69

    Article  CAS  Google Scholar 

  • Davidson EA, Savage K, Bolstad P, Clark DA, Curtis PS, Ellsworth DS, Hanson PJ, Law BE, Luo Y, Pregitzer KS (2002) Belowground carbon allocation in forests estimated from litterfall and IRGA-based soil respiration measurements. Agr Forest Meteorol 113:39–51

    Article  Google Scholar 

  • Davidson EA, Janssens IA, Luo Y (2006) On the variability of respiration in terrestrial ecosystems: moving beyond Q10. Global Change Biol 12:154–164

    Article  Google Scholar 

  • De Castro EA, Kauffman JB (1998) Ecosystem structure in the Brazilian Cerrado: a vegetation gradient of aboveground biomass, root mass and consumption by fire. J Trop Ecol 14:263–283

    Article  Google Scholar 

  • Delitti WBC, Pausas JG, Burger DM (2001) Belowground biomass seasonal variation in two Neotropical savannahs (Brazilian Cerrados) with different fire histories. Ann For Sci 58:713–721

    Article  Google Scholar 

  • Delitti WBC, Meguro M, Pausas JG (2006) Biomass and mineralmass estimates in a “cerrado” ecosystem. Rev Bras Bot 29:531–540

    Article  Google Scholar 

  • Drew MC (1997) Oxygen deficiency and root metabolism: injury and acclimation under hypoxia and anoxia. Annu Rev Plant Physiol Plant Mol Biol 48:223–250

    Article  PubMed  CAS  Google Scholar 

  • Epron D, Farque L, Lucot E, Badot P-M (1999) Soil CO2 efflux in a beech forest: the contribution of root respiration. Ann For Sci 56:289–295

    Article  Google Scholar 

  • Furley PA (1999) The nature and diversity of neotropical savanna vegetation with particular reference to the Brazilian cerrados. Global Ecol Biogeogr 8:223–241

    Google Scholar 

  • Hanson PJ, Edwards NT, Garten CT, Andrews JA (2000) Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochemistry 48:115–146

    Article  CAS  Google Scholar 

  • Harper CW, Blair JM, Fay PA, Knapp AK, Carlisle JD (2005) Increased rainfall variability and reduced rainfall amount decreases soil CO2 flux in a grassland ecosystem. Global Change Biol 11:322–334

    Article  Google Scholar 

  • Hoffmann WA, da Silva ER, Machado GC, Bucci SJ, Scholz FG, Goldstein G, Meinzer FC (2005) Seasonal leaf dynamics across a tree density gradient in a Brazilian savanna. Oecologia 145:306–315

    Article  Google Scholar 

  • Högberg P, Read DJ (2006) Towards a more plant physiological perspective on soil ecology. Trends Ecol Evol 21:548–554

    Article  PubMed  Google Scholar 

  • Högberg P, Nordgren A, Buchmann N, Taylor AFS, Ekblad A, Hogberg MN, Nyberg G, Ottosson-Lofvenius M, Read DJ (2001) Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411:789–792

    Article  PubMed  Google Scholar 

  • Hutchinson GL, Livingston GP (2001) Vents and seals in non-steady-state chambers used for measuring gas exchange between soil and the atmosphere. Eur J Soil Sci 52:675–682

    Article  Google Scholar 

  • Huxman T, Snyder K, Tissue D, Leffler AJ, Ogle K, Pockman W, Sandquist D, Potts D, Schwinning S (2004) Precipitation pulses and carbon fluxes in semiarid and arid ecosystems. Oecologia 141. doi:10.1007/s00442-004-1682-4

  • Ilstedt U, Nordgren A, Malmer A (2000) Optimum soil water for soil respiration before and after amendment with glucose in humid tropical acrisols and a boreal mor layer. Soil Biol Biochem 32:1591–1599

    Article  CAS  Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis: contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press

  • Janssens IA, Lankreijer H, Matteucci G, Kowalski AS, Buchmann N, Epron D, Pilegaard K, Kutsch W, Longdoz B, Grünwald T, Montagnani L, Dore S, Rebmann C, Moors EJ, Grelle A, Rannik Ü, Morgenstern K, Oltchev S, Clement R, Guðmundsson J, Minerbi S, Berbigier P, Ibrom A, Moncrieff J, Aubinet M, Bernhofer C, Jensen NO, Vesala T, Granier A, Schulze E-D, Lindroth A, Dolman AJ, Jarvis PG, Ceulemans R, Valentini R (2001) Productivity overshadows temperature in determining soil and ecosystem respiration across European forests. Global Change Biol 7:269–278

    Article  Google Scholar 

  • Jenkinson DS, Adams DE, Wild A (1991) Model estimates of CO2 emissions from soil in response to global warming. Nature 351:304–306

    Article  CAS  Google Scholar 

  • Linn DM, Doran JW (1984) Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils. Soil Sci Soc Am J 48:1267–1272

    Article  CAS  Google Scholar 

  • Liu Q, Edwards NT, Post WM, Gu L, Ledford J, Lenhart S (2006) Temperature-independent diel variation in soil respiration observed from a temperate deciduous forest. Global Change Biol 12:2136–2145

    Article  Google Scholar 

  • Lloyd J, Taylor JA (1994) On the temperature dependence of soil respiration. Funct Ecol 8:315–323

    Article  Google Scholar 

  • Longdoz B, Yernaux M, Aubinet M (2000) Soil CO2 efflux measurements in a mixed forest: impact of chamber disturbances, spatial variability and seasonal evolution. Global Change Biol 6:907–917

    Article  Google Scholar 

  • Malhi Y, Baldocchi DD, Jarvis PG (1999) The carbon balance of tropical, temperate and boreal forests. Plant Cell Environ 22:715–740

    Article  CAS  Google Scholar 

  • Marimon BH Jr, Haridasan M (2005) Comparação da vegetação arbórea e características edáficas de um cerradão e um cerrado sensu stricto em áreas adjacentes sobre solo distrófico no leste de Mato Grosso, Brasil. Acta Bot Bras 19:913–926

    Article  Google Scholar 

  • Meir P, Grace J, Miranda AC, Lloyd J (1996) Soil respiration in a rainforest in Amazonia and in cerrado in central Brazil. In: Gash JHC, Nobre CA, Roberts J, Victoria RL (eds) Amazonian deforestation and climate. Wiley, Chichester, pp 319–330

    Google Scholar 

  • Meir P, Metcalfe DB, Costa ACL, Fisher RA (2008) The fate of assimilated carbon during drought: impacts on respiration in Amazon rainforests. Philos T Roy Soc B 363:1849–1855

    Article  CAS  Google Scholar 

  • Metcalfe DB, Meir P, Aragão LEOC, Malhi Y, da Costa ACL, Braga A, Gonçalves PHL, de Athaydes J, de Almeida SS, Williams M (2007) Factors controlling spatio-temporal variation in carbon dioxide efflux from surface litter, roots, and soil organic matter at four rain forest sites in the eastern Amazon. J Geophys Res 112. doi:10.1029/2007JG000443

  • Miranda AC, Miranda HS, Lloyd J, Grace J, Francey RJ, McIntyre JA, Meir P, Riggan P, Lockwood R, Brass J (1997) Fluxes of carbon, water and energy over Brazilian cerrado: an analysis using eddy covariance and stable isotopes. Plant Cell Environ 20:315–328

    Article  CAS  Google Scholar 

  • O’Brien JJ, Oberbauer SF (2001) An inexpensive, portable meter for measuring soil moisture. Soil Sci Soc Am J 65:1081–1083

    Article  Google Scholar 

  • Ogle K, Reynolds J (2004) Plant responses to precipitation in desert ecosystems: integrating functional types, pulses, thresholds, and delays. Oecologia 141. doi:10.1007/s00442-004-1507-5

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, and the R Development Core Team (2010) nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-97

  • Pinto AD, Bustamante MMC, Kisselle K, Burke R, Zepp R, Viana LT, Varella RF, Molina M (2002) Soil emissions of N2O, NO, and CO2 in Brazilian savannas: effects of vegetation type, seasonality, and prescribed fires. J Geophys Res 107. doi:10.1029/2001JD000342

  • Potts DL, Huxman TE, Cable JM, English NB, Ignace DD, Eilts JA, Mason MJ, Weltzin JF, Williams DG (2006) Antecedent moisture and seasonal precipitation influence the response of canopy–scale carbon and water exchange to rainfall pulses in a semi–arid grassland. New Phytol 170:849–860

    Article  PubMed  CAS  Google Scholar 

  • R Development Core Team (2010) R: A Language and Environment for Statistical Computing. Vienna, Austria. http://www.R-project.org

  • Raich JW, Tufekciogul A (2000) Vegetation and soil respiration: correlations and controls. Biogeochemistry 48:71–90

    Article  CAS  Google Scholar 

  • Reichstein M, Rey A, Freibauer A, Tenhunen J, Valentini R, Banza J, Casals P, Cheng Y, Grünzweig JM, Irvine J, Joffre R, Law BE, Loustau D, Miglietta F, Oechel W, Ourcival J-M, Pereira JS, Peressotti A, Ponti F, Qi Y, Rambal S, Rayment M, Romanya J, Rossi F, Tedeschi V, Tirone G, Xu M, Yakir D (2003) Modeling temporal and large-scale spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices. Global Biogeochem Cy 17:1104–1119

    Article  Google Scholar 

  • Rey A, Pegoraro E, Tedeschi V, De Parri I, Jarvis PG, Valentini R (2002) Annual variation in soil respiration and its components in a coppice oak forest in Central Italy. Global Change Biol 8:851–866

    Article  Google Scholar 

  • Rustad L, Campbell GS, Marion G, Norby RJ, Mitchell MD, Hartley A, Cornelissen J, Gurevitch J (2001) A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126:543–562

    Article  Google Scholar 

  • Ryu Y, Sonnentag O, Nilson T, Vargas R, Kobayashi H, Wenk R, Baldocchi DD (2010) How to quantify tree leaf area index in an open savanna ecosystem: a multi-instrument and multi-model approach. Agr Forest Meteorol 150:63–76

    Article  Google Scholar 

  • Saiz G, Green C, Butterbach-Bahl K, Kiese R, Avitabile V, Farrell EP (2006) Seasonal and spatial variability of soil respiration in four Sitka spruce stands. Plant Soil 287:161–176

    Article  CAS  Google Scholar 

  • Sotta ED, Meir P, Malhi Y, Nobre AD, Hodnett M, Grace J (2004) Soil CO2 efflux in a tropical forest in the central Amazon. Global Change Biol 10:601–617

    Article  Google Scholar 

  • Sotta ED, Veldkamp E, Schwendenmann L, Guimares BR, Paixão RK, Ruivo M de LP, Lola da Costa AC, Meir P (2007) Effects an induced drought on soil carbon dioxide CO2 efflux and soil CO2 production in an Eastern Amazonian rainforest, Brazil. Global Change Biol 13:2218–2229

    Article  Google Scholar 

  • Tang J, Baldocchi DD (2005) Spatial–temporal variation in soil respiration in an oak–grass savanna ecosystem in California and its partitioning into autotrophic and heterotrophic components. Biogeochemistry 73:183–207

    Article  Google Scholar 

  • Trumbore SE, Davidson EA, de Camargo PB, Nepstad DC, Martinelli LA (1995) Belowground cycling of carbon in forests and pastures of Eastern Amazonia. Global Biogeochem Cy 9:515–528

    Article  CAS  Google Scholar 

  • Varella RF, Bustamante MMC, Pinto AS, Kisselle KW, Santos RV, Burke RA, Zepp RG, Viana LT (2004) Soil Fluxes of CO2, CO, NO, and N2O from an Old Pasture and from Native Savanna in Brazil. Ecol Appl 14:S221–S231

    Article  Google Scholar 

  • Vargas R, Allen MF (2008) Environmental controls and the influence of vegetation type, fine roots and rhizomorphs on diel and seasonal variation in soil respiration. New Phytol 179:460–471

    Article  PubMed  CAS  Google Scholar 

  • Xu M, Qi Y (2001) Soil-surface CO2 efflux and its spatial and temporal variations in a young ponderosa pine plantation in northern California. Global Change Biol 7:667–677

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Camille Boudot-Reddy for her valuable comments and discussion. We would also like to recognize the Universidade do Estado de Mato Grosso for allowing us to use the research site and for all their logistical support. This project was funded by a tied Ph.D. studentship from the Natural Environment Research Council (NED00S035/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andre Butler.

Additional information

Responsible Editor: Katja Klumpp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Butler, A., Meir, P., Saiz, G. et al. Annual variation in soil respiration and its component parts in two structurally contrasting woody savannas in Central Brazil. Plant Soil 352, 129–142 (2012). https://doi.org/10.1007/s11104-011-0984-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-011-0984-7

Keywords

Navigation