Skip to main content

Advertisement

Log in

Solanesol: a review of its resources, derivatives, bioactivities, medicinal applications, and biosynthesis

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Solanesol, which mainly accumulates in solanaceous crops, including tobacco, tomato, potato, eggplant, and pepper plants, is a long-chain polyisoprenoid alcohol compound with nine isoprene units. Chemical synthesis of solanesol is difficult; therefore, solanesol is primarily extracted from solanaceous crops, particularly tobacco leaves. In plants, solanesol exists in both free and esterified forms, and its accumulation is influenced by genetic and environmental factors. Solanesol is widely used in the pharmaceutical industry as an intermediate for the synthesis of ubiquinone drugs, such as coenzyme Q10 and vitamin K2. Solanesol possesses antibacterial, antifungal, antiviral, anticancer, anti-inflammatory, and anti-ulcer activities, and solanesol derivatives also have anti-oxidant and antitumour activities, in addition to other bioactivities. Solanesol derivatives can also be used for the treatment of cardiovascular disease, osteoporosis, acquired immune deficiency syndrome, and wound healing. Solanesol biosynthesis occurs in plastids of higher plants via the 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway. The key enzymes in solanesol biosynthesis, including 1-deoxy-d-xylulose-5-phosphate synthase, 1-deoxy-d-xylulose-5-phosphate-reductoisomerase, isopentenyl pyrophosphate isomerase, and solanesyl diphosphate synthase, are also important regulators of the MEP pathway, and their overexpression is favourable for downstream metabolic flow, further promoting the synthesis of downstream metabolites, such as solanesol. Future studies should determine the pharmacokinetic properties of solanesol and its derivatives and investigate the metabolic pathways and regulatory mechanisms mediating solanesol biosynthesis, metabolic and genetic engineering of solanesol, the synthetic biology of solanesol, and the physiological role of solanesol. In the present review, we systematically summarise current knowledge on solanesol resources, derivatives, bioactivities and medicinal applications, metabolic pathways, and key biosynthetic enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

AIDS:

Acquired immune deficiency syndrome

BSA:

Bovine serum albumin

CDP-ME:

4-Diphosphocytidyl-2-C-methyl-d-erythritol

CDP-MEP:

4-Diphosphocytidyl-2-C-methyl-d-erythritol-2-phosphate

DMAPP:

Dimethylallyl pyrophosphate

DXOP:

1-Deoxy-d-xylulose-5-phosphate

Dxs:

1-Deoxy-d-xylulose-5-phosphate synthase

Dxr:

1-Deoxy-d-xylulose-5-phosphate-reductoisomerase

ER:

Endoplasmic reticulum

FPP:

Farnesyl pyrophosphate

GPP:

Geranyl pyrophosphate

GGPP:

Geranylgeranyl pyrophosphate

HMB-PP:

1-Hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate

Ipi:

Isopentenyl pyrophosphate isomerase

IPP:

Isopentenyl pyrophosphate

IspD:

4-Diphosphocytidyl-2C-methyl-d-erythritol synthase

IspE:

4-Diphosphocytidyl-2C-methyl-d-erythritol kinase

IspF:

2-C-methyl-d-erythritol-2,4-cyclodiphosphate synthase

IspG:

1-Hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate synthase

IspH:

1-Hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate reductase

MEcPP:

2-C-methyl-d-erythritol-2,4-cyclodiphosphate

MEP:

2-C-methyl-d-erythritol-4-phosphate

MVA:

Mevalonic acid

SDB:

N-solanesyl-N, N′-bis(3,4-dimethoxybenzyl)ethylenediamine

SLSs:

Solanesol-like substances

SPP:

Solanesyl diphosphate

Sps:

Solanesyl diphosphate synthase

TMV:

Tobacco mosaic virus

References

  • Abdin AA, Homouda HE (2008) Mechanism of the neuroprotective role of coenzyme Q10 with or without L-dopa in rotenone-induced parkinsonism. Neuropharmacology 55:1340–1346

    CAS  PubMed  Google Scholar 

  • Alleti R, Rao V, Xu L, Gillies RJ, Mash EA (2010) A Solanesol-derived scaffold for multimerization of bioactive peptides. J Org Chem 75:5895–5903

    PubMed Central  CAS  PubMed  Google Scholar 

  • Athiyaman BP, Sankaranarayanan M (2014) Modeling of process parameters for enhanced production of coenzyme Q10 from Rhodotorula glutinis. Prep Biochem Biotechnol 45:398–410

    Google Scholar 

  • Bai Q, Yu J, Li M, Bai R, Katsumada G, Katsumada M, Chen XS (2014) Antioxidant function of solanesol and its inhibitory effect on tyrosinase. J Biomed Eng 31:833–836

    CAS  Google Scholar 

  • Bajda A, Konopka-Postupolska D, Krzymowska M, Hennig J, Skorupinska-Tudek K, Surmacz L, Wojcik J, Matysiak Z, Chojnacki T, Skorzynska-Polit E, Drazkiewicz M, Patrzylas P, Tomaszewska M, Kania M, Swist M, Danikiewicz W, Piotrowska W, Swiezewska E (2009) Role of polyisoprenoids in tobacco resistance against biotic stresses. Physiol Plant 135:351–364

    CAS  PubMed  Google Scholar 

  • Bentinger M, Tekle M, Dallner G (2010) Coenzyme Q–biosynthesis and functions. Biochem Biophys Res Commun 396:74–79

    CAS  PubMed  Google Scholar 

  • Block A, Fristedt R, Rogers S, Kumar J, Barnes B, Barnes J, Elowsky CG, Wamboldt Y, Mackenzie SA, Redding K, Merchant SS, Basset GJ (2013) Functional modeling identifies paralogous solanesyl-diphosphate synthases that assemble the side chain of plastoquinone-9 in plastids. J Biol Chem 288:27594–27606

    PubMed Central  CAS  PubMed  Google Scholar 

  • Borekova M, Hojerkova J, Koprda V, Bauerova K (2008) Nourishing and health benefits of coenzyme Q10—a review. Czech J Food Sci 26:229–241

    CAS  Google Scholar 

  • Bouvier F, Rahier A, Camara B (2005) Biogenesis, molecular regulation, and function of plant isoprenoids. Prog Lipid Res 44:357–429

    CAS  PubMed  Google Scholar 

  • Burton HR, Leggett E, Philips RE (1989) Factors influencing the concentration of solanesol in burley tobacco. Beit Z Tabakforsch 14:313–320

    CAS  Google Scholar 

  • Carretero-Paulet L, Ahumada I, Cunillera N, Rodríguez-Concepción M, Ferrer A, Boronat A, Campos N (2002) Expression and molecular analysis of the Arabidopsis DXR gene encoding 1-deoxy-d-xylulose 5-phosphate reductoisomerase, the first committed enzyme of the 2-C-methyl-d-erythritol 4-phosphate pathway. Plant Physiol 129:1581–1591

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chen AG, Shen GM, Liang XF, Liu GL, Pei J, Li F, Lv SF, Wang WJ, Yue YX, Wang XW (2007a) Research advances and progress of solanesol. Chin Tob Sci 28:44–48

    CAS  Google Scholar 

  • Chen HB, Zhang J, Yu HX, Hu QL (2007b) In vitro study on the antibacterial of a medicinal intermediate, solanesol. Qilu Pharm Aff 26:558–559

    Google Scholar 

  • Choi JH, Ryu YW, Seo JH (2005) Biotechnological production and applications of coenzyme Q10. Appl Microbiol Biotechnol 68:9–15

    CAS  PubMed  Google Scholar 

  • Corinne PC, Adam MB, Vincent JJM (2007) Current prospects for the production of coenzyme Q10 in microbes. Trends Biotechnol 25:514–521

    Google Scholar 

  • Court WA, Elliot JM, Hendel JG (1984) Influence of applied nitrogen fertilization on certain lipids, terpenes, and other characteristics of flue-cured tobacco. Tob Sci 28:69–72

    Google Scholar 

  • David DL, Nielsen MT (2003) Tobacco—production, chemistry and technology. China Chemical Industry Press, Beijing

    Google Scholar 

  • Ellington JJ, Schlotzhauer PF, Schepartz AI (1978) Lipid distribution in flue-cured tobacco plants. J Agri Food Chem 26:407–410

    CAS  Google Scholar 

  • Enokida H, Gotanda T, Oku S, Imazono Y, Kubo H, Hanada T, Suzuki S, Inomata K, Kishiye T, Tahara Y, Nishiyama K, Nakagawa M (2002) Reversal of P-glycoprotein-mediated paclitaxel resistance by new synthetic isoprenoids in human bladder cancer cell line. Cancer Sci 93:1037–1046

    CAS  Google Scholar 

  • Estévez JM, Cantero A, Reindl A, Reichler S, León P (2001) 1-deoxy-d-xylulose-5-phosphate synthase, a limiting enzyme for plastidic isoprenoid biosynthesis in plants. J Biol Chem 276:22901–22909

    PubMed  Google Scholar 

  • Fukusaki E, Takeno S, Bamba T, Okumoto H, Katto H, Kajiyami S, Kobayashi A (2004) Biosynthetic pathway for the C45 polyprenol, solanesol, in tobacco. Biosci Biotechnol Biochem 68:1988–1990

    CAS  PubMed  Google Scholar 

  • Gao M, Yang L, Zu YG (2007) HPLC determination of solanesol in waste of Solanaceae plants. Part B Chem Anal 43:454–456

    CAS  Google Scholar 

  • Gao YX, Zhou XJ, Wang FX, Zhang H (2011) Interaction between solanesol and bovine serum albumin. Chem Ind For Prod 31:60–64

    CAS  Google Scholar 

  • Goldstein JL, Brown MS (1990) Regulation of the mevalonate pathway. Nature 343:425–430

    CAS  PubMed  Google Scholar 

  • Guo Y, Ni JR, Huang W (2008) Comparison on bioactivities of solanesol extracted from tobacco leaves by different methods. J Anhui Agric Sci 36:6356–6359

    CAS  Google Scholar 

  • Hans J, Hause B, Strack D, Walter MH (2004) Cloning, characterization, and immunolocalization of a mycorrhiza-inducible 1-deoxy-d-xylulose 5-phosphate reductoisomerase in arbuscule-containing cells of maize. Plant Physiol 134:614–624

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hasunuma T, Takeno S, Hayashi S, Okumoto H, Katto H, Kajiyami S, Kobayashi A (2008) Overexpression of 1-deoxy-Dxylulose-5-phosphate reductoisomerase gene in chloroplast contributes to increment of isoprenoid production. J Biosci Bioeng 105:518–526

    CAS  PubMed  Google Scholar 

  • Hirooka K, Bamba T, Fukusaki E, Kobayashi A (2003) Cloning and kinetic characterization of Arabidopsis thaliana solanesyl-diphosphate synthase. Biochem J 370:679–686

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hodgson JM, Watts GF, Playford DA, Burke V, Croft KD (2002) Coenzyme Q10 improves blood pressure and glycaemic control: a controlled trial in subjects with type 2 diabetes. Eur J Clin Nutr 56:1137–1142

    CAS  PubMed  Google Scholar 

  • Hsieh FL, Chang TH, Ko TP, Wang AH (2011) Structure and mechanism of an Arabidopsis medium/long-chain-length prenyl pyrophosphate synthase. Plant Physiol 155:1079–1090

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hu JW, Wang L (2011) The research progress of vitamin K2 for the prevention and treatment of osteoporosis. Chin J Osteopores 17:1112–1114

    CAS  Google Scholar 

  • Hu JY, Liang Y, Xie Y, Huang ZF, Zhong HZ (2007) Study on solanesol content in every section of tobacco by high performance liquid chromatography. Chin J Anal Lab 26:106–108

    Google Scholar 

  • Jones MO, Perez-Fons L, Robertson FP, Bramley PM, Fraser PD (2013) Functional characterization of long-chain prenyl diphosphate synthases from tomato. Biochem J 449:729–740

    CAS  PubMed  Google Scholar 

  • Jun L, Saiki R, Tatsumi K, Nakagawa T, Kawamukai M (2004) Identification and subcellular localization of two solanesyl diphosphate synthases from Arabidopsis thaliana. Plant Cell Physiol 45:1882–1888

    CAS  PubMed  Google Scholar 

  • Kajiwara S, Fraser PD, Kondo K, Misawa N (1997) Expression of an exogenous isopentenyl diphosphate isomerase gene enhances isoprenoid biosynthesis in Escherichia coli. Biochem J 324:421–426

    PubMed Central  CAS  PubMed  Google Scholar 

  • Khidyrova NK, Shakhidoyatov KM (2002) Plant polyprenols and their biological activity. Chem Nat Compd 38:107–121

    CAS  Google Scholar 

  • Kotipalli KP, Rao NCV, Raj K (2008) Estimation of solanesol in tobacco and nontobacco plants from Solanaceae family. J Med Arom Plant Sci 30:65–68

    Google Scholar 

  • Lange M, Ghassemian M (2003) Genome organization in Arabidopsis thaliana: a survey for genes involved in isoprenoid and chlorophyll metabolism. Plant Mol Biol 51:925–948

    CAS  PubMed  Google Scholar 

  • Li J, Chase HA (2010) Development of adsorptive (non-ionic) macroporous resins and their uses in the purification of pharmacologically-active natural products from plant sources. Nat Prod Rep 27:1493–1510

    CAS  PubMed  Google Scholar 

  • Lipshutz BH, Lower A, Berl V, Schein K, Wetterich F (2005) An improved synthesis of the ‘‘miracle nutrient’’ coenzyme Q10. Org Lett 7:4095–4097

    CAS  PubMed  Google Scholar 

  • Liu YX (2010) Analysis of fatty alcohols, phytosterols and solanesol in tobacco. University of Science and Technology of China, Hefei

    Google Scholar 

  • Liu XP, Chen XJ, Li L, Wang XR, Li XC (2007) Determination of solanesol in different parts of tobacco leaves from different breeds and planting areas by high performance liquid chromatography–mass spectrometry. Roc Min Ana 26:105–108

    Google Scholar 

  • Logan BA, Monson RK, Potosnak MJ (2000) Biochemistry and physiology of foliar isoprene production. Trends Plant Sci 5:477–481

    CAS  PubMed  Google Scholar 

  • Lois ML, Rodríguez-Concepción M, Gallego F, Campos N, Boronat A (2000) Carotenoid biosynthesis during tomato fruit development: regulatory role of 1-deoxy-d-xylulose 5-phosphate synthase. Plant J 22:503–513

    CAS  PubMed  Google Scholar 

  • Ma L, Ding P, Yang GX, He GY (2006) Advances on the plant terpenoid isoprenoid biosynthetic pathway and its key enzymes. Biotechnol Bull 22:22–30

    Google Scholar 

  • Ma JY, Zhang J, Liu GX, Chen T, Xu XL (2009) Determination of solanesol in waste potato leaves and stems by RP-HPLC. J Northwest Norm Univ 45:72–75

    CAS  Google Scholar 

  • Mahmoud SS, Croteau RB (2001) Metabolic engineering of essential oil yield and composition in mint by altering expression of deoxyxylulose phosphate reductoisomerase and menthofuran synthase. Proc Natl Acad Sci U S A 98:8915–8920

    PubMed Central  CAS  PubMed  Google Scholar 

  • Matthews PD, Wurtzel ET (2000) Metabolic engineering of carotenoid accumulation in Escherichia coli by modulation of the isoprenoid precursor pool with expression of deoxyxylulose phosphate synthase. Appl Microbiol Biotechnol 53:396–400

    CAS  PubMed  Google Scholar 

  • Matthews RT, Yang L, Browne S, Baik M, Beal MF (1998) Coenzyme Q10 administration increases brain mitochondrial concentrations and exerts neuroprotective effects. Proc Natl Acad Sci U S A 95:8892–8897

    PubMed Central  CAS  PubMed  Google Scholar 

  • Min JH, Lee JS, Yang JD, Koo J (2003) The friedel-crafts allylation of a prenyl group stabilized by a sulfone moiety: expeditious syntheses of ubiquinones and menaquinones. J Org Chem 68:7925–7927

    CAS  PubMed  Google Scholar 

  • Mu FS, Luo M, Fu YJ, Zhang X, Yu P, Zu YG (2011) Synthesis of the key intermediate of coenzyme Q10. Molecules 16:4097–4103

    CAS  Google Scholar 

  • Nakamura A, Shimada H, Masuda T, Ohta H, Takamiya K (2001) Two distinct isopentenyl diphosphate isomerases in cytosol and plastid are differentially induced by environmental stresses in tobacco. FEBS Lett 506:61–64

    CAS  PubMed  Google Scholar 

  • Ndikubwimana JD, Lee BH (2014) Enhanced production techniques, properties and uses of coenzyme Q10. Biotechnol Lett 36:1917–1926

    Google Scholar 

  • Negishi E, Liou S, Xu C, Huo S (2002) A novel, highly selective, and general methodology for the synthesis of 1,5-diene-containing oligoisoprenoids of all possible geometrical combinations exemplified by an iterative and convergent synthesis of coenzyme Q10. Org Lett 4:261–264

    CAS  PubMed  Google Scholar 

  • Noll H, Ruegg R, Gloor U, Isler O (1960) Structure of a vitamin K2 compound from tubercle bacilli and synthesis of higher isoprenologs of vitamin K2 series. Helv Chim Acta 43:433–438

    CAS  Google Scholar 

  • Ohara K, Sasaki K, Yazaki K (2010) Two solanesyl diphosphate synthases with different subcellular localizations and their respective physiological roles in Oryza sativa. J Exp Bot 61:2683–2692

    PubMed Central  CAS  PubMed  Google Scholar 

  • Phillips MA, Walter MH, Ralph SG, Dabrowska P, Luck K, Urós EM, Boland W, Strack D, Rodríguez-Concepción M, Bohlmann J, Gershenzon J (2007) Functional identification and differential expression of 1-deoxy-d-xylulose 5-phosphate synthase in induced terpenoid resin formation of Norway spruce (Picea abies). Plant Mol Biol 65:243–257

    CAS  PubMed  Google Scholar 

  • Phillips MA, Leon P, Boronat A, Rodriguez-Concepcion M (2008) The plastidial MEP pathway: unified nomenclature and resources. Trends Plant Sci 13:619–623

    CAS  PubMed  Google Scholar 

  • Qin Y, Piao MZ, Wang FW (2014) Review on extraction purification and biological activity of coenzyme Q10. J Qingdao Agric Univ 31:136–141

    Google Scholar 

  • Rao CVN, Chakaraborthy MK (1986) Variations in solanesol levels among tobacco stalk positions, growth stages and air curing. Tob Int 188:142–143

    CAS  Google Scholar 

  • Rao CVN, Prabhu PF, Schepartz AI (2000) Influence of plant growth on the distribution of solanesol in tobacco green leaf. Tob Res 26:47–50

    CAS  Google Scholar 

  • Roe SJ, Oldfield MF, Geach N, Baxter A (2013) A convergent stereocontrolled synthesis of [3-14C]solanesol. J Lablled Compd Radiopharm 56:485–491

    CAS  Google Scholar 

  • Rowland RL, Latimer PH (1959) Flue-cured tobacco. IV. Isolation of solanesyl esters. Tobacco Int 3:1–3

    CAS  Google Scholar 

  • Rowland RL, Latimer PH, Giles JA (1956) Flue-cured tobacco. I. Isolation of solanesyl, an unsaturated. J Am Chem Soc 78:4680–4683

    CAS  Google Scholar 

  • Rusciani L, Proietti I, Rusciani A, Paradisi A, Sbordoni G, Alfano C, Panunzi S, De Gaetano A, Lippa S (2006) Low plasma coenzyme Q10 levels as an independent prognostic factor for melanoma progression. J Am Acad Dermatol 54:234–241

    PubMed  Google Scholar 

  • Sakaihara T, Honda A, Tateyama S, Sagami H (2000) Subcellular fractionation of polyprenyl diphosphate synthase activities responsible for the syntheses of polyprenols and dolichols in spinach leaves. J Biochem 128:1073–1078

    CAS  PubMed  Google Scholar 

  • Sándor PS, Clemente LD, Coppola G, Saenger U, Fumal A, Magis D, Seidel L, Agosti RM, Schoenen J (2005) Efficacy of coenzyme Q10 in migraine prophylaxis: a randomized controlled trial. Neurology 64:713–715

    PubMed  Google Scholar 

  • Santana-Méridas O, González-Coloma A, Sánchez-Vioque R (2012) Agricultural residues as a source of bioactive natural products. Phytochem Rev 11:447–466

    Google Scholar 

  • Schepartz AI, Ellington JJ, Burk LG (1978) Catalase activity and lipid contents of leaves from normal and sterile-flowered tobacco plants. Phytochemistry 17:1787–1788

    CAS  Google Scholar 

  • Scholtzhauer WS, Severson RF, Chortyk OT, Arrendale RF (1976) Pyrolytic formation of polynuclear aromatic hydrocarbons from petroleum ether extractable constituents of flue-cured tobacco leaf. J Agric Food Chem 24:992–997

    CAS  Google Scholar 

  • Serebryakov EP, Nigmatov AG (1990) Biologically active derivatives of polyprenylacetic acids and related compounds (review). Pharm Chem J 24:88–98

    Google Scholar 

  • Sheen SJ, Davis DL, De Jong DW (1978) Gas-liquid chromatographic quantification of solanesol in chlorophyll mutants of tobacco. J Agric Food Chem 26:259–262

    CAS  Google Scholar 

  • Shults CW, Beal MF, Song D, Fontaine D (2004) Pilot trial of high dosages of coenzyme Q10 in patients with Parkinson’s disease. Exp Neurol 188:491–494

    CAS  PubMed  Google Scholar 

  • Shunk CH, Erickson RE, Wong EL, Folkers K (1959) Coenzymes Q.X. Synthesis of coenzyme Q9, 2,3-dimethyl-5-solanesylbenzoquinone, and a vitamin K analog. J Am Chem Soc 81:5000

  • Sidorova TA, Nigmatov AG, Kakpakova ES, Stavrovskaya AA, Gerassimova GK, Shtil AA, Serebryakov EP (2002) Effects of isoprenoid analogues of SDB-ethylenediamine on multidrug resistant tumor cells alone and in combination with chemotherapeutic drugs. J Med Chem 45:5330–5339

    CAS  PubMed  Google Scholar 

  • Skalicka-Woźniak K, Garrard I (2014) Counter-current chromatography for the separation of terpenoids: a comprehensive review with respect to the solvent systems employed. Phytochem Rev 13:547–572

    PubMed Central  PubMed  Google Scholar 

  • Srivastava S, Raj K, Khare P, Bhaduri AP, Chander R, Raghubir R, Mahendra K, Narsimha RCV, Prabhu SR (2009) Novel hybrid natural products derived from solanesol as wound healing agents. Indian J Chem 48:237–247

    Google Scholar 

  • Stedman RL (1968) Chemical composition of tobacco and tobacco smoke. Chem Rev 68:153–207

    CAS  PubMed  Google Scholar 

  • Stevenson J, Hemming FW, Morton RA (1963) Intracellular distribution of solanesol and plastoquinone in green leaves of the tobacco plant. Biochem J 88:52–56

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sun Z, Cunningham FX, Gantt E (1998) Differential expression of two isopentenyl pyrophosphate isomerases and enhanced carotenoid accumulation in a unicellular chlorophyte. Proc Natl Acad Sci U S A 95:11482–11488

    PubMed Central  CAS  PubMed  Google Scholar 

  • Suzuki H, Tomi A, Nishimura T (1990) Cytocidal activity of a synthetic isoprenoid, N-solanesol-N, N-bis(3,4-dimethoxybenzyl) ethylenediamine, and its potentiation of antitumor drugs against multidrug and sensitive cells in vitro. Jap J Can Res 81:298–303

    CAS  Google Scholar 

  • Tang DS (2007) Extration and separation of solanesol from tobacco. Zhejiang University, Hangzhou

    Google Scholar 

  • Taylor MA, Fraser PD (2011) Solanesol: added value from Solanaceous waste. Phytochemistry 72:1323–1327

    CAS  PubMed  Google Scholar 

  • Tian Y, Yue T, Yuan Y, Soma PK, Williams PD, Machado PA, Fu H, Kratochvil RJ, Wei C-I, Lo M (2010) Tobacco biomass hydrolysate enhances coenzyme Q10 production using photosynthetic Rhodospirillum rubrum. Bioresour Technol 101:7877–7881

    CAS  PubMed  Google Scholar 

  • Tomida A, Suzuki H (1990) Synergistic effect in culture of bleomycin-group antibiotics and N-solanesol-N, N-bis(3,4-dimethoxybenzyl) ethylenediamine, a synthetic isoprenoid. Jap J Can Res 81:1184–1190

    CAS  Google Scholar 

  • Turunen M, Olsson J, Dallner G (2004) Metabolism and function of coenzyme Q. Biochim Biophys Acta 1660:171–199

    CAS  PubMed  Google Scholar 

  • Vidal B, Tancoge J (1982) Total solanesol in contents of different types of tobacco. Annales du Tabac 17:93–103

    CAS  Google Scholar 

  • Walter MH, Hans J, Strack D (2002) Two distantly related genes encoding 1-deoxy-d-xylulose 5-phosphate synthases: differential regulation in shoots and apocarotenoid-accumulating mycorrhizal roots. Plant J 31:243–254

    CAS  PubMed  Google Scholar 

  • Wang CJ, Song JY, Zhao J (2003a) Synthesis and biological evaluation of the diacid solanesyl glycosyl esters. Chin J Org Chem 23:1102–1106

    CAS  Google Scholar 

  • Wang CJ, Song JY, Zhao J, Sun XQ (2003b) Synthesis and biological activity of solanesyl glucosyl dibasic acid esters. Chin J Appl Chem 20:754–759

    CAS  Google Scholar 

  • Wang CJ, Wang YX, Song JY, Zhao J (2004) Study on the synthesis and biological activity of diacid solanesyl galactosyl diesters. Chem Online 67:1–4

    Google Scholar 

  • Wang CJ, Wang YX, Zhao J, Sun J (2005) Synthesis and biological activity of glycosyl N-solanesylaminocarboxylic esters. Chin J Appl Chem 24:1601–1605

    Google Scholar 

  • Wang JH, Wang CJ, Gan Y, Du GJ, Zhao J (2007) Design, synthesis and synergistic effects of novel derivatives of solanesol. Chem Res Chin Univ 23:417–420

    CAS  Google Scholar 

  • Wang JH, Gao RH, Gan Y, Xie SQ, Wang CJ, Zhao J (2009) Synthesis and evaluation of solanesol derivatives as novel potent synergistic agents. J Asian Nat Res 11:978–984

    CAS  Google Scholar 

  • Wang Q, Wang SY, Gu Q, Tao SQ, Tao TZ, Rong JS (2013a) The research progress of vitamin K2 and treatment of osteoporosis. Chin J Osteopores 19:655–658

    CAS  Google Scholar 

  • Wang XM, Zhang YW, Zhang GZ, Yin ZY (2013b) Improved extraction of solanesol from tobacco waste by enzymatic cell wall breaking. Chin J Biotechnol 29:1706–1710

    CAS  Google Scholar 

  • Wang ZS, Liu WQ, Wang JH, Chen DL, Zhang JR (2013c) Progress in research and application of solanesol. J Anhui Agric Sci 41:12539–12540

    CAS  Google Scholar 

  • Weber P (2001) Vitamin K and bone health. Nutrition 17:88–887

    Google Scholar 

  • Withers ST, Keasling JD (2007) Biosynthesis and engineering of isoprenoid small molecules. Appl Microbiol Biot 73:980–990

    CAS  Google Scholar 

  • Xia LL (2013) Effect of environmental factors on the growth and solanesol metabolism in tobacco. Zhengzhou University, Zhengzhou

    Google Scholar 

  • Xiao X, Ni YY, Li SY, Hu JR, Zhang JS, Sun JS, Liu P (2010) Supercritical CO2 conditions of CoQ10 biotransformation from solanesol by Schizosaccharom prombe. J Food Sci Biotechnol 29:302–306

    CAS  Google Scholar 

  • Xiao Y, Dai Y, Shi WQ, Li JZ, Li Y, Yin SF (2012) Synthesis and antitumor activities of the diacid solanesyl 5-fluorouracil esters derivatives. Chin J Org Chem 32:169–173

    CAS  Google Scholar 

  • Yoshida H, Kotani Y, Ochiai K, Araki K (1998) Production of ubiquinone-10 using bacteria. J Gen Appl Microbiol 44:19–26

    CAS  PubMed  Google Scholar 

  • Zhao CJ, Li CY, Fu YJ, Zu YG (2005) Extraction and determination of solanesol in waste tobacco leaves by ultrasonic and HPLC. Chin J Appl Chem 22:1265–1267

    CAS  Google Scholar 

  • Zhao J, Bu ZW, Liu Y (2006a) Synthesis and biological activity of new solanesyl nitrogen mustards. Chin J Appl Chem 23:514–518

    CAS  Google Scholar 

  • Zhao XY, Liu P, Tang DQ, Sun JS (2006b) Biosynthesis of Coenzyme Q10 using Schizosaccharomyces promb in an organic/aqueous system. Food Ferment Ind 32:16–18

    Google Scholar 

  • Zhao CJ, Li CY, Zu YG (2007) Different solanesol contents in leaves of several tobacco varieties and their changes during seedling growth. Plant Physiol Commun 43:298–300

    CAS  Google Scholar 

  • Zhou HY, Liu CZ (2006) Rapid determination of solanesol in tobacco by highperformance liquid chromatography with evaporative light scattering detection following microwave-assisted extraction. J Chromatogr B 835:119–122

    CAS  Google Scholar 

  • Zhu Y, Hu XB, Huang J, Li P (2006) A new extract procedure of solanesol from abandoned tobacco leaves. West Chin J Pharm Sci 21:518–520

    CAS  Google Scholar 

  • Zou ZQ, Fu SC, Liu ZH (2005) The research progress of vitamin K2. Chin J Osteopores 11:389–392

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Jianbo Xiao (Shanghai Normal University) for critical reading of the manuscript. We acknowledge the financial support of CAAS (an Agricultural Science and Technology Innovation Program grant to Zhongfeng ZHANG), China National Tobacco Corporation (No. 110201401008(JY-08)), Tobacco Research Institute of CAAS, and the Special Fund for Agro-Scientific Research in the Public Interest of China (No. 201203091).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongfeng Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, N., Liu, Y., Gong, D. et al. Solanesol: a review of its resources, derivatives, bioactivities, medicinal applications, and biosynthesis. Phytochem Rev 14, 403–417 (2015). https://doi.org/10.1007/s11101-015-9393-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-015-9393-5

Keywords

Navigation