Skip to main content

Advertisement

Log in

Recent developments in the bioactivity of mono- and diterpenes: anticancer and antimicrobial activity

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Secondary plant metabolites, and in particular monoterpenes, have been recognised as potential medicinal agents for centuries. As such, terpenes have been the focus of a plethora of scientific studies examining various aspects of their bioactivity. In particular, antimicrobial activity and anticancer potential have been studied extensively. Whilst the antimicrobial and anticancer activity of terpenes has been demonstrated in vitro, fewer studies have been conducted examining specific aspects of the mechanisms of antimicrobial action and anticancer efficacy in vivo. The purpose of this review is therefore to examine recent advances in the areas of antimicrobial and anticancer activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Anderson L, Schmieder GJ, Werschler WP et al (2009) Randomized, double-blind, double-dummy, vehicle-controlled study of ingenol mebutate gel 0.025% and 0.05% for actinic keratosis. J Am Acad Dermatol 60:934–943

    Article  PubMed  Google Scholar 

  • Bakkali F, Averbeck S, Averbeck D et al (2008) Biological effects of essential oils: a review. Food Chem Toxicol 46:446–475

    Article  CAS  PubMed  Google Scholar 

  • Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods: a review. Int J Food Microbiol 94:223–253

    Article  CAS  PubMed  Google Scholar 

  • Calcabrini A, Stringaro A, Toccacieli L et al (2004) Terpinen-4-ol, the main component of Melaleuca alternifolia (tea tree) oil inhibits the in vitro growth of human melanoma cells. J Invest Dermatol 122:349–360

    Article  CAS  PubMed  Google Scholar 

  • Carneiro de Barros J, Lúcia da Conceição M, Gomes Neto NJ et al (2009) Interference of Origanum vulgare L. essential oil on the growth and some physiological characteristics of Staphylococcus aureus strains isolated from foods. LWT Food Sci Technol 42:1139–1143

    Article  CAS  Google Scholar 

  • Challacombe JM, Suhrbier A, Parsons PG et al (2006) Neutrophils are a key component of the antitumor efficacy of topical chemotherapy with ingenol-3-angelate. J Immunol 177:8123–8132

    Article  CAS  PubMed  Google Scholar 

  • Chaudhary SC, Alam MS, Siddiqui MS et al (2009) Perillyl alcohol attenuates Ras-ERK signaling to inhibit murine skin inflammation and tumorigenesis. Chem Biol Interact 179:145–153

    Article  CAS  PubMed  Google Scholar 

  • Clark SS (2006) Perillyl alcohol induces c-Myc-dependent apoptosis in Bcr/Abl-transformed leukemia cells. Oncology 70:13–18

    Article  CAS  PubMed  Google Scholar 

  • Cox SD, Mann CM, Markham JL et al (2000) The mode of antimicrobial action of the essential oil of Melaleuca alternifolia (tea tree oil). J Appl Microbiol 88:170–175

    Article  CAS  PubMed  Google Scholar 

  • da Fonseca CO, Schwartsmann G, Fischer J et al (2008) Preliminary results from a phase I/II study of perillyl alcohol intranasal administration in adults with recurrent malignant gliomas. Surg Neurol 70:259–267

    Article  PubMed  Google Scholar 

  • da Fonseca CO, Simao M, Lins IR et al (2010) Efficacy of monoterpene perillyl alcohol upon survival rate of patients with recurrent glioblastoma. J Cancer Res Clin Oncol 137:287–293

    Article  PubMed  Google Scholar 

  • Devi KP, Nisha SA, Sakthivel R et al (2010) Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane. J Ethnopharmacol 130:107–115

    Article  CAS  PubMed  Google Scholar 

  • Di Pasqua R, Mamone G, Ferranti P et al (2010) Changes in the proteome of Salmonella enterica serovar Thompson as stress adaptation to sublethal concentrations of thymol. Proteomics 10:1040–1049

    CAS  PubMed  Google Scholar 

  • Echeverrigaray S, Michelim L, Delamare APL et al (2008) The effect of monoterpenes on swarming differentiation and haemolysin activity in Proteus mirabilis. Molecules 13:3107–3116

    Article  CAS  PubMed  Google Scholar 

  • Elegbede JA, Flores R, Wang RC (2003) Perillyl alcohol and perillaldehyde induced cell cycle arrest and cell death in BroTo and A549 cells cultured in vitro. Life Sci 73:2831–2840

    Article  CAS  PubMed  Google Scholar 

  • Fernandes J, Da Fonseca CO, Teixeira A et al (2005) Perillyl alcohol induces apoptosis in human glioblastoma multiforme cells. Oncol Rep 13:943–947

    CAS  PubMed  Google Scholar 

  • Fisher K, Phillips C (2009) The mechanism of action of a citrus oil blend against Enterococcus faecium and Enterococcus faecalis. J Appl Microbiol 106:1343–1349

    Article  CAS  PubMed  Google Scholar 

  • Fu YJ, Chen LY, Zu YG et al (2009) The antibacterial activity of clove essential oil against Propionibacterium acnes and its mechanism of action. Arch Dermatol 145:86–88

    PubMed  Google Scholar 

  • Greay SJ, Ireland DJ, Kissick HT et al (2010a) Inhibition of established subcutaneous murine tumour growth with topical Melaleuca alternifolia (tea tree) oil. Cancer Chemother Pharmacol 66:1095–1102

    Article  CAS  PubMed  Google Scholar 

  • Greay SJ, Ireland DJ, Kissick HT et al (2010b) Induction of necrosis and cell cycle arrest in murine cancer cell lines by Melaleuca alternifolia (tea tree) oil and terpinen-4-ol. Cancer Chemother Pharmacol 65:877–888

    Article  CAS  PubMed  Google Scholar 

  • Hammer KA, Carson CF (2011) Antibacterial and antifungal activities of essential oils. In: Thormar H (ed) Lipids and essential oils as antimicrobial agents. Wiley, West Sussex

    Google Scholar 

  • Hammer KA, Carson CF, Riley TV (2008) Frequencies of resistance to Melaleuca alternifolia (tea tree) oil and rifampicin in Staphylococcus aureus, Staphylococcus epidermidis and Enterococcus faecalis. Int J Antimicrob Agents 32:170–173

    Article  CAS  PubMed  Google Scholar 

  • Inoue Y, Shiraishi A, Hada T et al (2004) The antibacterial effects of terpene alcohols on Staphylococcus aureus and their mode of action. FEMS Microbiol Lett 237:325–331

    CAS  PubMed  Google Scholar 

  • Lambert RJW, Skandamis PN, Coote PJ et al (2001) A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J Appl Microbiol 91:453–462

    Article  CAS  PubMed  Google Scholar 

  • Li L, Shukla S, Lee A et al (2010) The skin cancer chemotherapeutic agent ingenol-3-angelate (PEP005) is a substrate for the epidermal multidrug transporter (ABCB1) and targets tumor vasculature. Cancer Res 70:4509–4519

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ogbourne SM, Suhrbier A, Jones B et al (2004) Antitumor activity of 3-ingenyl angelate: plasma membrane and mitochondrial disruption and necrotic cell death. Cancer Res 64:2833–2839

    Article  CAS  PubMed  Google Scholar 

  • Oussalah M, Caillet S, Lacroix M (2006) Mechanism of action of Spanish oregano, Chinese cinnamon, and savory essential oils against cell membranes and walls of Escherichia coli O157:H7 and Listeria monocytogenes. J Food Prot 69:1046–1055

    PubMed  Google Scholar 

  • Papadopoulos CJ, Carson CF, Chang BJ et al (2008) Role of the MexAB-OprM efflux pump of Pseudomonas aeruginosa in tolerance to tea tree (Melaleuca alternifolia) oil and its monoterpene components terpinen-4-ol, 1, 8-cineole, and alpha-terpineol. Appl Environ Microbiol 74:1932–1935

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Paparella A, Taccogna L, Aguzzi I et al (2008) Flow cytometric assessment of the antimicrobial activity of essential oils against Listeria monocytogenes. Food Control 19:1174–1182

    Article  CAS  Google Scholar 

  • Qiu J, Feng H, Lu J et al (2010) Eugenol reduces the expression of virulence-related exoproteins in Staphylococcus aureus. Appl Environ Microbiol 76:5846–5851

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Siller G, Gebauer K, Welburn P et al (2009) PEP005 (ingenol mebutate) gel, a novel agent for the treatment of actinic keratosis: results of a randomized, double-blind, vehicle-controlled, multicentre, phase IIa study. Australas J Dermatol 50:16–22

    Article  PubMed  Google Scholar 

  • Stratton SP, Alberts DS, Einspahr JG et al (2010) A phase 2a study of topical perillyl alcohol cream for chemoprevention of skin cancer. Cancer Prev Res (Phila) 3:160–169

    Article  CAS  Google Scholar 

  • Wiseman DA, Werner SR, Crowell PL (2007) Cell cycle arrest by the isoprenoids perillyl alcohol, geraniol, and farnesol is mediated by p21(Cip1) and p27(Kip1) in human pancreatic adenocarcinoma cells. J Pharmacol Exp Ther 320:1163–1170

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Zhou F, Ji BP et al (2008) The antibacterial mechanism of carvacrol and thymol against Escherichia coli. Lett Appl Microbiol 47:174–179

    Article  CAS  PubMed  Google Scholar 

  • Yeruva L, Pierre KJ, Elegbede A et al (2007) Perillyl alcohol and perillic acid induced cell cycle arrest and apoptosis in non small cell lung cancer cells. Cancer Lett 257:216–226

    Article  CAS  PubMed  Google Scholar 

  • Yeruva L, Hall C, Elegbede JA et al (2010) Perillyl alcohol and methyl jasmonate sensitize cancer cells to cisplatin. Anticancer Drugs 21:1–9

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr C. Locher (UWA) for providing the chemical structures. S. J. Greay and K. A. Hammer received financial support from Rural Industries Research and Development Corporation (RIRDC), Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherine A. Hammer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greay, S.J., Hammer, K.A. Recent developments in the bioactivity of mono- and diterpenes: anticancer and antimicrobial activity. Phytochem Rev 14, 1–6 (2015). https://doi.org/10.1007/s11101-011-9212-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-011-9212-6

Keywords

Navigation