Skip to main content

Advertisement

Log in

Combination of (M)DSC and Surface Analysis to Study the Phase Behaviour and Drug Distribution of Ternary Solid Dispersions

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Miscibility of the different compounds that make up a solid dispersion based formulation play a crucial role in the drug release profile and physical stability of the solid dispersion as it defines the phase behaviour of the dispersion. The standard technique to obtain information on phase behaviour of a sample is (modulated) differential scanning calorimetry ((M)DSC). However, for ternary mixtures (M)DSC alone is not sufficient to characterize their phase behaviour and to gain insight into the distribution of the active pharmaceutical ingredient (API) in a two-phased polymeric matrix.

Methods

MDSC was combined with complementary surface analysis techniques, specifically time-of-flight secondary ion mass spectrometry (ToF-SIMS) and atomic force microscopy (AFM). Three spray-dried model formulations with varying API/PLGA/PVP ratios were analyzed.

Results

MDSC, TOF-SIMS and AFM provided insights into differences in drug distribution via the observed surface coverage for 3 differently composed ternary solid dispersions.

Conclusions

Combining MDSC and surface analysis rendered additional insights in the composition of mixed phases in complex systems, like ternary solid dispersions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1
FIGURE 2
FIGURE 3
FIGURE 4
FIGURE 5
FIGURE 6
FIGURE 7
FIGURE 8
FIGURE 9

Similar content being viewed by others

Abbreviations

MDSC:

Modulated differential scanning calorimetry

AFM:

Atomic force microscopy

API:

Active pharmaceutical ingredient

DDS:

Drug delivery system

HIV:

Human immunodeficiency virus

PLGA:

Poly(lactic-co-glycolic acid)

PVP:

Polyvinylpyrrolidone

T g :

Glass transition temperature

ToF-SIMS:

Time of flight secondary ion mass spectrometry

References

  1. Janssens S, Van den Mooter G. Review: physical chemistry of solid dispersions. J Pharm Pharmacol. 2009;61(12):1571–86.

    Article  CAS  PubMed  Google Scholar 

  2. Van den Mooter G. The use of amorphous solid dispersions: a formulation strategy to overcome poor solubility and dissolution rate. Drug Discov Today Technol. 2012;9(2):e71–e174.

    Article  Google Scholar 

  3. Leuner C, Dressman J. Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm. 2000;50(1):47–60.

    Article  CAS  PubMed  Google Scholar 

  4. Vasconcelos T, Sarmento B, Costa P. Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov Today. 2007;12(23–24):1068–75.

    Article  CAS  PubMed  Google Scholar 

  5. Vo CL-N, Park C, Lee B-J. Current trends and future perspectives of solid dispersions containing poorly water-soluble drugs. Eur J Pharm Biopharm. 2013;85(3 Pt B):799–813.

    Article  CAS  PubMed  Google Scholar 

  6. Kalogeras IM. A novel approach for analyzing glass-transition temperature vs. composition patterns: application to pharmaceutical compound + polymer systems. Eur J Pharm Sci. 2011;42(5):470–83.

    Article  CAS  PubMed  Google Scholar 

  7. Gordon M, Taylor S. Ideal copolymers and the second-order transitions of synthetic rubbers. I. non-crystalline copolymers. J Appl Chem. 1952;2(9):493–500.

    Article  CAS  Google Scholar 

  8. Meeus J, Chen X, Scurr DJ, Ciarnelli V, Amssoms K, Roberts CJ, et al. Nanoscale surface characterization and miscibility study of a spray-dried injectable polymeric matrix consisting of poly(lactic-co-glycolic acid) and polyvinylpyrrolidone. J Pharm Sci. 2012;101(9):3473–85.

    Article  CAS  PubMed  Google Scholar 

  9. Meeus J, Scurr DJ, Amssoms K, Davies MC, Roberts CJ, Van den Mooter G. Surface characteristics of spray-dried microspheres consisting of PLGA and PVP: relating the influence of heat and humidity to the thermal characteristics of these polymers. Mol Pharm. 2013;10(8):3213–24.

    Article  CAS  PubMed  Google Scholar 

  10. Rafati A, Boussahel A, Shakesheff KM, Shard AG, Roberts CJ, Chen X, et al. Chemical and spatial analysis of protein loaded PLGA microspheres for drug delivery applications. J Control Release. 2012;162(2):321–9.

    Article  CAS  PubMed  Google Scholar 

  11. Scoutaris N, Hook AL, Gellert PR, Roberts CJ, Alexander MR, Scurr DJ. ToF-SIMS analysis of chemical heterogenities in inkjet micro-array printed drug/polymer formulations. J Mater Sci Mater Med. 2012;23(2):385–91.

    Article  CAS  PubMed  Google Scholar 

  12. Kreye F, Hamm G, Karrout Y, Legouffe R, Bonnel D, Siepmann F, et al. MALDI-TOF MS imaging of controlled release implants. J Control Release. 2012;161(1):98–108.

    Article  CAS  PubMed  Google Scholar 

  13. Weuts I, Van Dycke F, Voorspoels J, De Cort S, Stokbroekx S, Leemans R, et al. Physicochemical properties of the amorphous drug, cast films, and spray dried powders to predict formulation probability of success for solid dispersions: etravirine. J Pharm Sci. 2011;100(1):260–74.

    Article  CAS  PubMed  Google Scholar 

  14. Lauer ME, Siam M, Tardio J, Page S, Kindt JH, Grassmann O. Rapid assessment of homogeneity and stability of amorphous solid dispersions by atomic force microscopy—from bench to batch. Pharm Res. 2013;30(8):2010–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Lauer ME, Grassmann O, Siam M, Tardio J, Jacob L, Page S, et al. Atomic force microscopy-based screening of drug-excipient miscibility and stability of solid dispersions. Pharm Res. 2011;28(3):572–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Qi S, Moffat JG, Yang Z. Early stage phase separation in pharmaceutical solid dispersion thin films under high humidity: improved spatial understanding using probe-based thermal and spectroscopic nanocharacterization methods. Mol Pharm. 2013;10(3):918–30.

    Article  CAS  PubMed  Google Scholar 

  17. Alsteens D, Dupres V, Yunus S, Latgé J-P, Heinisch JJ, Dufrêne YF. High-resolution imaging of chemical and biological sites on living cells using peak force tapping atomic force microscopy. Langmuir. 2012;28(49):16738–44.

    Article  CAS  PubMed  Google Scholar 

  18. Adamcik J, Berquand A, Mezzenga R. Single-step direct measurement of amyloid fibrils stiffness by peak force quantitative nanomechanical atomic force microscopy. Appl Phys Lett AIP Publ. 2011;98(19):193701.

    Article  Google Scholar 

  19. Paragkumar NT, Edith D, Six J-L. Surface characteristics of PLA and PLGA films. Appl Surf Sci. 2006;253(5):2758–64.

    Article  Google Scholar 

  20. Van den Mooter G, Wuyts M, Blaton N, Busson R, Grobet P, Augustijns P, et al. Physical stabilisation of amorphous ketoconazole in solid dispersions with polyvinylpyrrolidone K25. Eur J Pharm Sci. 2001;12(3):261–9.

    Article  PubMed  Google Scholar 

  21. Janssens S, De Zeure A, Paudel A, Van Humbeeck J, Rombaut P, Van den Mooter G. Influence of preparation methods on solid state supersaturation of amorphous solid dispersions: a case study with itraconazole and eudragit e100. Pharm Res. 2010;27(5):775–85.

    Article  CAS  PubMed  Google Scholar 

  22. Tobyn M, Brown J, Dennis AB, Fakes M, Gao Q, Gamble J, et al. Amorphous drug-PVP dispersions: application of theoretical, thermal and spectroscopic analytical techniques to the study of a molecule with intermolecular bonds in both the crystalline and pure amorphous state. J Pharm Sci. 2009;98(9):3456–68.

    Article  CAS  PubMed  Google Scholar 

  23. Janssens S, Nagels S, de Armas HN, D’Autry W, Van Schepdael A, Van den Mooter G. Formulation and characterization of ternary solid dispersions made up of Itraconazole and two excipients, TPGS 1000 and PVPVA 64, that were selected based on a supersaturation screening study. Eur J Pharm Biopharm. 2008;69(1):158–66.

    Article  CAS  PubMed  Google Scholar 

  24. Wan F, Bohr A, Maltesen MJ, Bjerregaard S, Foged C, Rantanen J, et al. Critical solvent properties affecting the particle formation process and characteristics of celecoxib-loaded plga microparticles via spray-drying. Pharm Res. 2013;30(4):1065–76.

    Article  CAS  PubMed  Google Scholar 

  25. Paudel A, Worku ZA, Meeus J, Guns S, Van den Mooter G. Manufacturing of solid dispersions of poorly water soluble drugs by spray drying: formulation and process considerations. Int J Pharm. 2013;453(1):253–84.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

Dr. Matthew Piggott (ISAC, Nottingham, United Kingdom) is acknowledged for coordinating the AFM experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy Van den Mooter.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure 1

Negative ToF-SIMS spectra showing the markers for API (m/z = 183, C8H7SO3 ), PLGA (m/z = 143, C6H7O4 ) and PVP (m/z = 84, C5H8O). (GIF 62 kb)

High resolution image (TIFF 138 kb)

Figure 2

Negative polarity ToF-SIMS spectra at m/z 84 (ion characteristic of PVP) of A. PVP and the model formulations with following API/PLGA/PVP (w/w/w) ratios. B. 10/75/15, C. 20/50/30, D. 30/25/45. (GIF 16 kb)

High resolution image (TIFF 36 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meeus, J., Scurr, D.J., Chen, X. et al. Combination of (M)DSC and Surface Analysis to Study the Phase Behaviour and Drug Distribution of Ternary Solid Dispersions. Pharm Res 32, 1407–1416 (2015). https://doi.org/10.1007/s11095-014-1543-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1543-8

KEY WORDS

Navigation