Skip to main content
Log in

The Effect of Actuator Nozzle Designs on the Electrostatic Charge Generated in Pressurised Metered Dose Inhaler Aerosols

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To investigate the influence of different actuator nozzle designs on aerosol electrostatic charges and aerosol performances for pressurised metered dose inhalers (pMDIs).

Methods

Four actuator nozzle designs (flat, curved flat, cone and curved cone) were manufactured using insulating thermoplastics (PET and PTFE) and conducting metal (aluminium) materials. Aerosol electrostatic profiles of solution pMDI formulations containing propellant HFA 134a with different ethanol concentration and/or model drug beclomethasone dipropionate (BDP) were studied using a modified electrical low-pressure impactor (ELPI) for all actuator designs and materials. The mass of the deposited drug was analysed using high performance liquid chromatography (HPLC).

Results

Both curved nozzle designs for insulating PET and PTFE actuators significantly influenced aerosol electrostatics and aerosol performance compared with conducting aluminium actuator, where reversed charge polarity and higher throat deposition were observed with pMDI formulation containing BDP. Results are likely due to the changes in plume geometry caused by the curved edge nozzle designs and the bipolar charging nature of insulating materials.

Conclusions

This study demonstrated that actuator nozzle designs could significantly influence the electrostatic charges profiles and aerosol drug deposition pattern of pMDI aerosols, especially when using insulating thermoplastic materials where bipolar charging is more dominant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Newman SP. Principles of metered-dose inhaler design. Respir Care. 2005;50(9):1177–90.

    PubMed  Google Scholar 

  2. Clark AR. Physics of aerosol formation. J Aerosol Med. 1996;9(s1):S-19–26. MDIs.

    Article  Google Scholar 

  3. Dunbar C. Atomization mechanisms of pressurized metered dose inhaler. Part Sci Technol. 1997;15(3–4):253–71.

    Article  Google Scholar 

  4. Sher E, Bar-Kohany T, Rashkovan A. Flash-boiling atomization. Prog Energy Combust Sci. 2008;34(4):417–39.

    Article  CAS  Google Scholar 

  5. Kwok PCL, Glover W, Chan HK. Electrostatic charge characteristics of aerosols produced from metered dose inhalers. J Pharm Sci. 2005;94(12):2789–99. PubMed PMID: ISI:000233733300018.

    Article  CAS  PubMed  Google Scholar 

  6. Hoe S, Traini D, Chan HK, Young PM. The influence of flow rate on the aerosol deposition profile and electrostatic charge of single and combination metered dose inhalers. Pharm Res. 2009;26(12):2639–46. PubMed PMID: ISI:000271464100011.

    Article  CAS  PubMed  Google Scholar 

  7. Kwok PCL, Chan HK. Electrostatics of pharmaceutical inhalation aerosols. J Pharm Pharmacol. 2009;61(12):1587–99. PubMed PMID: ISI:000281136700002.

    Article  CAS  PubMed  Google Scholar 

  8. Diu CK, Yu CP. Deposition from charged aerosol flows through a pipe bend. J Aerosol Sci. 1980;11(4):397–402. PubMed PMID: ISI:A1980KM94500007.

    Article  Google Scholar 

  9. Ingham DB. Precipitation of charged-particles in human airways. J Aerosol Sci. 1981;12(2):131–5. PubMed PMID: ISI:A1981LN21400005.

    Article  Google Scholar 

  10. Thiagarajan V, Yu CP. Sedimentation from charged aerosol flows in parallel-plate and cylindrical channels. J Aerosol Sci. 1979;10(4):405–10. PubMed PMID: ISI:A1979HT24200007.

    Article  Google Scholar 

  11. Yu CP, Chandra K. Precipitation of submicron charged-particles in human lung airways. Bull Math Biol. 1977;39(4):471–8. PubMed PMID: ISI:A1977DL62700007.

    Article  CAS  PubMed  Google Scholar 

  12. Chan TL, Yu CP. Charge effects on particle deposition in the human tracheobronchial tree. Ann Occup Hyg. 1982;26(1–4):65–75. PubMed PMID: ISI:A1982PT13100006.

    Article  CAS  PubMed  Google Scholar 

  13. Melandri C, Tarroni G, Prodi V, Dezaiacomo T, Formignani M, Lombardi CC. Deposition of charged-particles in the human airways. J Aerosol Sci. 1983;14(5):657–69. PubMed PMID: ISI:A1983RT47400008.

    Article  Google Scholar 

  14. Tarroni G, Melandri C, Prodi V, Dezaiacomo T, Formignani M, Bassi P. An indication on the biological variability of aerosol total deposition in humans. Am Ind Hyg Assoc J. 1980;41(11):826–31. PubMed PMID: ISI:A1980KN75500008.

    Article  CAS  PubMed  Google Scholar 

  15. Ferin J, Mercer TT, Leach LJ. The effect of aerosol charge on the deposition and clearance of Tio2 particles in rats. Environ Res. 1983;31(1):148–51. PubMed PMID: ISI:A1983QR93200013.

    Article  CAS  PubMed  Google Scholar 

  16. Fraser DA. Deposition of unipolar charged particles in lungs of animals. Arch Environ Health. 1966;13(2):152. PubMed PMID: ISI:A19668080900003.

    Article  CAS  PubMed  Google Scholar 

  17. Vincent JH, Johnston WB, Jones AD, Johnston AM. Static electrification of airborne asbestos - a study of its causes, assessment and effects on deposition in the lungs of rats. Am Ind Hyg Assoc J. 1981;42(10):711–21. PubMed PMID: ISI:A1981MK58000004.

    Article  CAS  PubMed  Google Scholar 

  18. Lowell J, Rose-Innes A. Contact electrification. Adv Phys. 1980;29(6):947–1023.

    Article  CAS  Google Scholar 

  19. McCarty LS, Whitesides GM. Electrostatic charging due to separation of ions at interfaces: contact electrification of ionic electrets. Angew Chem Int Ed. 2008;47(12):2188–207.

    Article  CAS  Google Scholar 

  20. Greason WD. Investigation of a test methodology for triboelectrification. J Electrost. 2000;49(3):245–56.

    Article  Google Scholar 

  21. Thomas SW, Vella SJ, Kaufman GK, Whitesides GM. Patterns of electrostatic charge and discharge in contact electrification. Angew Chem. 2008;120(35):6756–8.

    Article  Google Scholar 

  22. Greason WD. Electrostatic discharge: a charge driven phenomenon. J Electrost. 1992;28(3):199–218.

    Article  Google Scholar 

  23. Vinson JE, Liou JJ. Electrostatic discharge in semiconductor devices: an overview. Proc IEEE. 1998;86(2):399–420.

    Article  Google Scholar 

  24. Castle G. Contact charging between insulators. J Electrost. 1997;40:13–20.

    Article  Google Scholar 

  25. Lewis T. Charge transport, charge injection and breakdown in polymeric insulators. J Phys D Appl Phys. 1990;23(12):1469.

    Article  CAS  Google Scholar 

  26. Williams MW. Triboelectric charging of insulating polymers–some new perspectives. AIP Adv. 2012;2(1):010701–9.

    Article  Google Scholar 

  27. Fredholm O, Lovstrand K. On the discharge of static electricity from an insulator surface. J Phys E Sci Instrum. 1972;5(11):1058.

    Article  CAS  Google Scholar 

  28. Jasti VK. Electrostatic Charge Generation and Dissipation on Woven Fabrics Treated with Antistatic and Hydrophilic Surface Finishes: North Carolina State University; 2012.

  29. Miller HC. Flashover of insulators in vacuum: review of the phenomena and techniques to improved holdoff voltage. IEEE Trans Electr Insul. 1993;28(4):512–27.

    Article  CAS  Google Scholar 

  30. Oda T, Ito Y. Studies on electrostatic surface discharges on corona-charged polymer surfaces. IEEE Trans Ind Appl. 1990;26(4):656–61.

    Article  CAS  Google Scholar 

  31. Chen Y, Wong WHW, Lewis DA, Church T, Traini D, Young PM. Triboelectrification study of a pressurized metered dose inhaler (pMDI) formulation using different actuator materials and orifice designs. Respir Drug Deliv. 2012;3:845–50.

    Google Scholar 

  32. Chen Y, Traini D, Fletcher DF, Chan HK, Lewis DA, Church T, et al. The effect of pressurized metered dose inhaler (pMDI) actuator nozzle design on triboelectrification and aerosol deposition. RDD Eur. 2013;2:439–44.

    Google Scholar 

  33. Ndama AT, Guigon P, Saleh K. A reproducible test to characterise the triboelectric charging of powders during their pneumatic transport. J Electrost. 2011;69(3):146–56. PubMed PMID: ISI:000292230300002.

    Article  CAS  Google Scholar 

  34. Gad SC. Pharmaceutical manufacturing handbook: production and processes. Hoboken: John Wiley & Sons; 2008.

    Book  Google Scholar 

  35. Lewis D. Determination of electrical parameters of some propellants. Personal email communication to the author (ed) May 2012.

  36. Williams III RO, Hu C. Moisture uptake and its influence on pressurized metered-dose inhalers. Pharm Dev Technol. 2000;5(2):153–62.

    Article  CAS  PubMed  Google Scholar 

  37. Chen Y, Young PM, Fletcher DF, Chan HK, Long E, Lewis D, et al. The influence of actuator materials and nozzle designs on electrostatic charge of pressurised metered dose inhaler (pMDI) formulations. Pharm Res. 2014;31(5):1325–37.

    Article  CAS  PubMed  Google Scholar 

  38. Tarjuelo J, Montero J, Carrion P, Honrubia F, Calvo M. Irrigation uniformity with medium size sprinklers. Part II: influence of wind and other factors on water distribution. Trans Am Soc Agric Eng. 1999;42(3):677–89.

    Article  Google Scholar 

  39. Lefebvre A. Atomization and Sprays, CRC press. Arthur Lefebvre. 1988;434.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Traini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Young, P.M., Fletcher, D.F. et al. The Effect of Actuator Nozzle Designs on the Electrostatic Charge Generated in Pressurised Metered Dose Inhaler Aerosols. Pharm Res 32, 1237–1248 (2015). https://doi.org/10.1007/s11095-014-1529-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1529-6

KEY WORDS

Navigation