Skip to main content

Advertisement

Log in

Investigation of Solid Phase Composition on Tablet Surfaces by Grazing Incidence X-ray Diffraction

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To investigate solid state transformations of drug substances during compaction using grazing incidence X-ray diffraction (GIXD).

Methods

The solid forms of three model drugs–theophylline (TP), nitrofurantoin (NF) and amlodipine besylate (AMB)–were compacted at different pressures (from 100 to 1000 MPa); prepared tablets were measured using GIXD. After the initial measurements of freshly compacted tablets, tablets were subjected to suitable recrystallization treatment, and analogous measurements were performed.

Results

Solid forms of TP, NF and AMB showed partial amorphization as well as crystal disordering during compaction; the extent of these effects generally increased as a function of pressure. The changes were most pronounced at the outer surface region. The different solid forms showed difference in the formation of amorphicity/crystal disordering. Dehydration due to compaction was observed for the TP monohydrate, whereas hydrates of NF and AMB were stable towards dehydration.

Conclusions

With GIXD measurements, it was possible to probe the solid form composition at the different depths of the tablet surfaces and to obtain depth-dependent information on the compaction-induced amorphization, crystal disordering and dehydration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. Alderborn G, Nyström C. Pharmaceutical powder compaction technology. New York: Marcel Dekker, Inc.; 1995.

    Google Scholar 

  2. Hilfiker R, Blatter F, von Raumer M. Relevance of solid-state properties for pharmaceutical products. In: Hilfiker R, editor. Polymorphism: in the pharmaceutical industry. Weinheim: WILLEY-VCH Verlag GmbH & Co.; 2006. p. 1–20.

    Chapter  Google Scholar 

  3. Joiris E, Martino PD, Berneron C, Guyot-Hermann A-M, Guyot J-C. Compression behavior of orthorhombic paracetamol. Pharm Res. 1998;15:1122–30.

    Article  PubMed  CAS  Google Scholar 

  4. Sun CQ, Grant DJW. Influence of crystal structure on the tableting properties of sulfamerazine polymorphs. Pharm Res. 2001;18:274–80.

    Article  PubMed  CAS  Google Scholar 

  5. Feng YS, Grant DJW, Sun CC. Influence of crystal structure on the tableting properties of n-alkyl 4-hydroxybenzoate esters (Parabens). J Pharm Sci. 2007;96:3324–33.

    Article  PubMed  CAS  Google Scholar 

  6. Otsuka M, Nakanishi M, Matsuda Y. Effects of crystalline form on the tableting compression mechanism of phenobarbital polymorphs. Drug Dev Ind Pharm. 1999;25:205–15.

    Article  PubMed  CAS  Google Scholar 

  7. Jaffe J, Foss NE. Compression of crystalline substances. J Am Pharm Assoc. 1959;48:26–9.

    CAS  Google Scholar 

  8. Sun C, Grant D. Improved tableting properties of p-hydroxybenzoic acid by water of crystallization: a molecular insight. Pharm Res. 2004;21:382–6.

    Article  PubMed  Google Scholar 

  9. Bernstein J. Molecular crystals: pinching polymorphs. Nat Mater. 2005;4:427–8.

    Article  PubMed  CAS  Google Scholar 

  10. Hüttenrauch R, Fricke S, Zielke P. Mechanical activation of pharmaceutical systems. Pharm Res. 1985:302–306.

  11. Brittain HG. Effects of mechanical processing on phase composition. J Pharm Sci. 2002;91:1573–80.

    Article  PubMed  CAS  Google Scholar 

  12. Chan HK, Doelker E. Polymorphic transformation of some drugs under compression. Drug Dev Ind Pharm. 1985;11:315–32.

    Article  CAS  Google Scholar 

  13. Kala H, Haack U, Wenzel U, Zessin G, Pollandt P. Crystallographic behavior of carbamazepine under compression. Pharmazie. 1987;42:524–7.

    PubMed  CAS  Google Scholar 

  14. Kala H, Traue J, Haack U, Moldenhauer H, Kedvessy G, Selmeczi B. Time-dependence of polymorphic changes of sulfanilamide during tablet compression. Pharmazie. 1982;37:674–5.

    PubMed  CAS  Google Scholar 

  15. Ibrahim HG, Pisano F, Bruno A. Polymorphism of phenylbutazone: properties and compressional behavior of crystals. J Pharm Sci. 1977;66:669–73.

    Article  PubMed  CAS  Google Scholar 

  16. Ghan GA, Lalla JK. Effect of compressional forces on piroxicam polymorphs. J Pharm Pharmacol. 1992;44:678–81.

    Article  PubMed  CAS  Google Scholar 

  17. Kala H, Moldenhauer H, Giese R, Kedvessy G, Selmeczi B, Pintye-Hodi K. Polymorphism of sulfathiazole and its crystallographic behavior under compression pressure. Pharmazie. 1981;36:833–8.

    CAS  Google Scholar 

  18. Boldyreva E. High-pressure polymorphs of molecular solids: when are they formed, and when are they not? some examples of the role of kinetic control. Cryst Growth Des. 2007;7:1662–8.

    Article  CAS  Google Scholar 

  19. Wildfong PL, Morris KR, Anderson CA, Short SM. Demonstration of a shear-based solid-state phase transformation in a small molecular organic system: chlorpropamide. J Pharm Sci. 2007;96:1100–13.

    Article  PubMed  CAS  Google Scholar 

  20. Okumura T, Ishida M, Takayama K, Otsuka M. Polymorphic transformation of indomethacin under high pressures. J Pharm Sci. 2006;95:689–700.

    Article  PubMed  CAS  Google Scholar 

  21. Otsuka M, Matsumoto T, Kaneniwa N. Effects of the mechanical energy of multi-tableting compression on the polymorphic transformations of chlorpropamide. J Pharm Pharmacol. 1989;41:665–9.

    Article  PubMed  CAS  Google Scholar 

  22. Koivisto M, Heinanen P, Tanninen VP, Lehto VP. Depth profiling of compression-induced disorders and polymorphic transition on tablet surfaces with grazing incidence X-ray diffraction. Pharm Res. 2006;23:813–20.

    Article  PubMed  CAS  Google Scholar 

  23. Chawla G, Bansal AK. Effect of processing on celecoxib and its solvates. Pharm Dev Technol. 2004;9:419–33.

    Article  PubMed  CAS  Google Scholar 

  24. Lefebvre C, Guyot-Hermann AM, Draguet-Brughmans M, Bouche R, Guyot JC. Polymorphic transitions of carbamazepine during grinding and compression. Drug Dev Ind Pharm. 1986;12:1913–27.

    Article  CAS  Google Scholar 

  25. Wikström H, Marsac PJ, Taylor LS. In-line monitoring of hydrate formation during wet granulation using Raman spectroscopy. J Pharm Sci. 2005;94:209–19.

    Article  PubMed  Google Scholar 

  26. Romer M, Heinamaki J, Miroshnyk I, Sandler N, Rantanen J, Yliruusi J. Phase transformations of erythromycin A dihydrate during pelletisation and drying. Eur J Pharm Biopharm. 2007;67:246–52.

    Article  PubMed  Google Scholar 

  27. Otsuka M, Kanbniwa N, Otsuka K, Kawakami K, Umezawa O. Effect of tableting pressure and geometrical factor of tablet on dehydration kinetics of theophyline monohydrate tablets. Drug Dev Ind Pharm. 1993;19:541–57.

    Article  CAS  Google Scholar 

  28. Suihko E, Lehto V-P, Ketolainen J, Laine E, Paronen P. Dynamic solid-state and tableting properties of four theophylline forms. Int J Pharm. 2001;217:225–36.

    Article  PubMed  CAS  Google Scholar 

  29. Ketolainen J, Poso A, Viitasaari V, Gynther J, Pirttimäki J, Laine E, et al. Changes in solid-state structure of cyclophosphamide monohydrate induced by mechanical treatment and storage. Pharm Res. 1995;12:299–304.

    Article  PubMed  CAS  Google Scholar 

  30. Brussel BAV, Hosson JTMD. Glancing angle x-ray diffraction: a different approach. Appl Phys Lett. 1994;64:1585–7.

    Article  Google Scholar 

  31. Debnath S, Predecki P, Suryanarayanan R. Use of glancing angle X-ray powder diffractometry to depth-profile phase transformations during dissolution of indomethacin and theophylline tablets. Pharm Res. 2004;21:149–59.

    Article  PubMed  CAS  Google Scholar 

  32. Liu J, Saw RE, Kiang YH. Calculation of effective penetration depth in X-ray diffraction for pharmaceutical solids. J Pharm Sci. 2010;99:3807–14.

    Article  PubMed  CAS  Google Scholar 

  33. Pienaar EW, Caira MR, Lötter AP. Polymorphs of nitrofurantoin. 2. preparation and X-Ray crystal-structures of two anhydrous forms of nitrofurantoin. J Crystallogr Spectrosc Res. 1993;23:785–90.

    Article  CAS  Google Scholar 

  34. Koradia V, de Diego HL, Frydenvang K, Ringkjøbing-Elema M, Müllertz A, Bond AD, et al. Solid forms of amlodipine besylate: physico-chemical, structural and thermodynamic characterization. Cryst Growth Des. 2010;10:5279–90.

    Article  CAS  Google Scholar 

  35. Parratt LG. Surface studies of solids by total reflection of X-rays. Phys Rev. 1954;95:359–69.

    Article  Google Scholar 

  36. Cullity BD. Elements of x-ray diffraction. Reading: Addison-Wesley; 1978.

    Google Scholar 

  37. Roisnel T, Rodriguez-Carvajal J. WinPLOTR: a windows tool for powder diffraction pattern analysis. Materials Science Forum, Proceedings of the Seventh European Powder Diffraction Conference (EPDIC 7). 378–3:118–123 (2000).

  38. Caira MR, Pienaar EW, Lötter AP. Polymorphism and pseudopolymorphism of the antibacterial nitrofurantoin. Mol Cryst Liq Cryst. 1996;279:241–64.

    Article  CAS  Google Scholar 

  39. Koradia V, de Diego HL, Elema MR, Rantanen J. Integrated approach to study the dehydration kinetics of nitrofurantoin monohydrate. J Pharm Sci. 2010;99:3966–76.

    PubMed  CAS  Google Scholar 

  40. Phadnis NV, Suryanarayanan R. Polymorphism in anhydrous theophylline—implications on the dissolution rate of theophylline tablets. J Pharm Sci. 1997;86:1256–63.

    Article  PubMed  CAS  Google Scholar 

  41. Debnath S, Suryanarayanan R. Influence of processing-induced phase transformations on the dissolution of theophylline tablets. AAPS PharmSciTech. 2004;5:E8.

    Article  PubMed  Google Scholar 

  42. Busignies V, Leclerc B, Porion P, Evesque P, Couarraze G, Tchoreloff P. Quantitative measurements of localized density variations in cylindrical tablets using X-ray microtomography. Eur J Pharm Biopharm. 2006;64:38–50.

    Article  PubMed  CAS  Google Scholar 

  43. Eiliazadeh B, Briscoe BJ, Sheng Y, Pitt K. Investigating density distributions for tablets of different geometry during the compaction of pharmaceuticals. Part Sci Technol. 2003;21:303–16.

    Article  CAS  Google Scholar 

  44. Hüttenrauch R, Fricke S. Mechano-chemical decomposition of drugs through galenic processes. Int J Pharm. 1979;3:289–90.

    Article  Google Scholar 

  45. Karjalainen M, Airaksinen S, Rantanen J, Aaltonen J, Yliruusi J. Characterization of polymorphic solid-state changes using variable temperature X-ray powder diffraction. J Pharm Biomed Anal. 2005;39:27–32.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS & DISCLOSURES

Vishal Koradia is thankful to the Drug Research Academy (Copenhagen, Denmark) and H. Lundbeck A/S (Copenhagen, Denmark) for financial support. Matrix Laboratories Limited is thanked for providing amlodipine besylate sample.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jukka Rantanen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koradia, V., Tenho, M., Lopez de Diego, H. et al. Investigation of Solid Phase Composition on Tablet Surfaces by Grazing Incidence X-ray Diffraction. Pharm Res 29, 134–144 (2012). https://doi.org/10.1007/s11095-011-0520-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-011-0520-8

KEY WORDS

Navigation