Skip to main content
Log in

The Interaction Between the Oropharyngeal Geometry and Aerosols via Pressurised Metered Dose Inhalers

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

This study investigated the effect of oropharyngeal geometry on inhaled aerosol characteristics via pressurised metered dose inhalers (pMDIs), both with or without spacers.

Methods

Seven adult oropharyngeal models with different centreline lengths, total volumes, and degrees of constriction were employed as induction ports for a laser diffraction particle size analyser and cascade impactor. Particle size change over time, mass median aerodynamic diameter (MMAD), average median volume diameter (DV50), inhaled doses, and oropharyngeal depositions (percentage of the nominal dose) for aerosols via suspension and ultrafine pMDIs with or without spacers at 30 l/min airflow were determined.

Results

Variations in oropharyngeal geometry caused significant variations in inhaled particle size distributions, doses, oropharyngeal drug depositions, and particle size change over time when pMDIs were used without spacers. However, inhaled aerosol characteristics had marginal variations for the ultrafine pMDI plus large volume spacer (MMAD range: 0.69–0.78 µm, DV50 range: 1.27–1.36 µm, inhaled dose range: 46.46–52.92%). It was found that the amounts of inhaled aerosol particles with aerodynamic size of less than 0.83 µm via pMDIs plus large volume spacer were slightly affected by the oropharyngeal geometry.

Conclusion

Inhaling ultrafine aerosols via spacers may reduce the effect of oropharyngeal geometry on inhaled aerosol properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Laube BL. The expanding role of aerosols in systemic drug delivery, gene therapy, and vaccination. Respir Care. 2005;50:1161–76.

    PubMed  Google Scholar 

  2. Karpel JP, Aldrich TK, Prezant DJ, Guguchev K, Gaitan-Salas A, Pathiparti R. Emergency treatment of acute asthma with albuterol metered-dose inhaler plus holding chamber: how often should treatments be administered? Chest. 1997;112:348–56.

    Article  PubMed  CAS  Google Scholar 

  3. Dolovich MB, Ahrens RC, Hess DR, Anderson P, Dhand R, Rau JL, et al. American College of Chest Physicians; American College of Asthma, Allergy, and Immunology. Device selection and outcomes of aerosol therapy: Evidence-based guidelines: American College of Chest Physicians/American College of Asthma, Allergy, and Immunology. Chest. 2005;127:335–71.

    Article  PubMed  Google Scholar 

  4. Szefler SJ, Martin RJ, King TS, Boushey HA, Cherniack RM, Chinchilli VM, et al. Asthma Clinical Research Network of the National Heart Lung, and Blood Institute. Significant variability in response to inhaled corticosteroids for persistent asthma. J Allergy Clin Immunol. 2002;109:410–8.

    Article  PubMed  CAS  Google Scholar 

  5. Borgström L, Derom E, Ståhl E, Wåhlin-Boll E, Pauwels R. The inhalation device influences lung deposition and bronchodilating effect of terbutaline. Am J Respir Crit Care Med. 1996;153:1636–40.

    PubMed  Google Scholar 

  6. Borgström L, Olsson B, Thorsson L. Degree of throat deposition can explain the variability in lung deposition of inhaled drugs. J Aerosol Med. 2006;19:473–83.

    Article  PubMed  Google Scholar 

  7. Dunbar C, Scheuch G, Sommerer K, DeLong M, Verma A, Batycky R. In vitro and in vivo dose delivery characteristics of large porous particles for inhalation. Int J Pharm. 2002;245:179–89.

    Article  PubMed  CAS  Google Scholar 

  8. Svartengren K, Lindestad P, Svartengren M, Philipson K, Bylin G, Camner P. Added external resistance reduces oropharyngeal deposition and increases lung deposition of aerosol particles in asthmatics. Am J Respir Crit Care Med. 1995;152:32–7.

    PubMed  CAS  Google Scholar 

  9. Svartengren K, Anderson M, Svartengren M, Philipson K, Camner P. Oropharyngeal deposition of 3.5 microns particles inhaled through an elongated mouthpiece. Eur Respir J. 1996;9:1556–9.

    Article  PubMed  CAS  Google Scholar 

  10. De Boeck K, Alifier M, Warnier G. Is the correct use of a dry powder inhaler (Turbohaler) age dependent? J Allergy Clin Immunol. 1999;103:763–7.

    Article  PubMed  Google Scholar 

  11. Burnell PK, Asking L, Borgström L, Nichols SC, Olsson B, Prime D, et al. Studies of the human oropharyngeal airspaces using magnetic resonance imaging IV–the oropharyngeal retention effect for four inhalation delivery systems. J Aerosol Med. 2007;20:269–81.

    Article  PubMed  CAS  Google Scholar 

  12. Ehtezazi T, Allanson DR, Jenkinson ID, O’Callaghan C. Effect of oropharyngeal length in drug lung delivery via suspension pressurized metered dose inhalers. Pharm Res. 2006;23:1364–72.

    Article  PubMed  CAS  Google Scholar 

  13. Janssens HM, De Jongste JC, Hop WC, Tiddens HA. Extra-fine particles improve lung delivery of inhaled steroids in infants: a study in an upper airway model. Chest. 2003;123:2083–8.

    Article  PubMed  CAS  Google Scholar 

  14. Leach CL, Davidson PJ, Hasselquist BE, Boudreau RJ. Lung deposition of hydrofluoroalkane-134a beclomethasone is greater than that of chlorofluorocarbon fluticasone and chlorofluorocarbon beclomethasone: a cross-over study in healthy volunteers. Chest. 2002;122:510–6.

    Article  PubMed  CAS  Google Scholar 

  15. Ehtezazi T, Horsfield MA, Barry PW, O’Callaghan C. Dynamic change of the upper airway during inhalation via aerosol delivery devices. J Aerosol Med. 2004;17:325–34.

    Article  PubMed  Google Scholar 

  16. Ehtezazi T, Southern KW, Allanson D, Jenkinson I, O’Callaghan C. Suitability of the upper airway models obtained from MRI studies in simulating drug lung deposition from inhalers. Pharm Res. 2005;22:166–70.

    Article  PubMed  CAS  Google Scholar 

  17. Lin TC, Breysse PN, Laube BL, Swift DL. Mouthpiece diameter affects deposition efficiency in cast models of the human oral airways. J Aerosol Med. 2001;14:335–41.

    Article  PubMed  CAS  Google Scholar 

  18. Wildhaber JH, Devadason SG, Eber E, Hayden MJ, Everard ML, Summers QA, et al. Effect of electrostatic charge, flow, delay and multiple actuations on the in vitro delivery of salbutamol from different small volume spacers for infants. Thorax. 1996;51:985–8.

    Article  PubMed  CAS  Google Scholar 

  19. Mitchell PJ, Nagel MW, Wiersema KJ, Doyle CC. Aerodynamic particle size analysis of aerosols from pressurised metered dose inhalers: Comparison of Anderson 8-stage cascade impactor, next generation pharmaceutical impactor, and model 3321 aerodynamic particle sizer aerosol spectrometer. AAPS PharmSciTech. 2003;4:1–9.

    Article  Google Scholar 

  20. Volovitz B, Bilavsky E, Nussinovitch M. Effectiveness of high repeated doses of inhaled budesonide or fluticasone in controlling acute asthma exacerbations in young children. J Asthma. 2008;45:561–7.

    Article  PubMed  CAS  Google Scholar 

  21. British Thoracic Society Scottish Intercollegiate Guidelines Network. British Guideline on the Management of Asthma. Thorax. 2008;63:iv1–121.

    Article  Google Scholar 

  22. Nyambura BK, Kellaway IW, Taylor KM. Insulin nanoparticles: stability and aerosolization from pressurized metered dose inhalers. Int J Pharm. 2009;375:114–1122.

    Article  PubMed  CAS  Google Scholar 

  23. Wu L, Al-Haydari M, da Rocha SR. Novel propellant-driven inhalation formulations: engineering polar drug particles with surface-trapped hydrofluoroalkane-philes. Eur J Pharm Sci. 2008;33:146–58.

    Article  PubMed  CAS  Google Scholar 

  24. Martin AR, Finlay WH. The effect of humidity on the size of particles delivered from metered-dose inhalers. Aerosol Sci Tech. 2005;39:283–9.

    CAS  Google Scholar 

  25. Martonen TB, Bell KA, Phalen RF, Wilson AF, Ho A. Growth rate measurements and deposition modelling of hygroscopic aerosols in human tracheobronchial models. Ann Occup Hyg. 1982;26:93–108.

    Article  PubMed  CAS  Google Scholar 

  26. Hickey AJ, Martonen TB. Behavior of hygroscopic pharmaceutical aerosols and the influence of hydrophobic additives. Pharm Res. 1993;10:1–7.

    Article  PubMed  CAS  Google Scholar 

  27. Garrett J, Williams S, Wong C, Holdaway D. Treatment of acute asthmatic exacerbations with an increased dose of inhaled steroid. Arch Dis Child. 1998;79:12–7.

    Article  PubMed  CAS  Google Scholar 

  28. Svartengren K, Philipson K, Svartengren M, Anderson M, Camner P. Tracheobronchial deposition and clearance in small airways in asthmatic subjects. Eur Respir J. 1996;9:1118–22.

    Article  Google Scholar 

  29. Aswania O, Ritson S, Iqbal SM, Bhatt J, Rigby AS, Everard ML. Intra-subject variability in lung dose in healthy volunteers using five conventional portable inhalers. J Aerosol Med. 2004;17:231–8.

    Article  PubMed  CAS  Google Scholar 

  30. Borgström L, Bengtsson T, Derom E, Pauwels R. Variability in lung deposition of inhaled drug, within and between asthmatic patients, with a pMDI and a dry powder inhaler, Turbuhaler. Int J Pharm. 2000;193:227–30.

    Article  PubMed  Google Scholar 

  31. Usmani OS, Biddiscombe MF, Barnes PJ. Regional lung deposition and bronchodilator response as a function of beta2-agonist particle size. Am J Respir Crit Care Med. 2005;172:1497–504.

    Article  PubMed  Google Scholar 

  32. Mazhar SH, Ismail NE, Newton DA, Chrystyn H. Relative lung deposition of salbutamol following inhalation from a spacer and a Sidestream jet nebulizer following an acute exacerbation. Br J Clin Pharmacol. 2008;65:334–7.

    Article  PubMed  Google Scholar 

  33. Roller CM, Zhang G, Troedson RG, Leach CL, Le Souëf PN, Devadason SG. Spacer inhalation technique and deposition of extrafine aerosol in asthmatic children. Eur Respir J. 2007;29:299–306.

    Article  PubMed  CAS  Google Scholar 

  34. Onhøj J, Thorsson L, Bisgaard H. Lung deposition of inhaled drugs increases with age. Am J Respir Crit Care Med. 2000;162:1819–22.

    PubMed  Google Scholar 

  35. Smyth H, Hickey AJ, Brace G, Barbour T, Gallion J, Grove J. Spray pattern analysis for metered dose inhalers I: orifice size, particle size, and droplet motion correlations. Drug Dev Ind Pharm. 2006;32:1033–41.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We would like to take this opportunity to express our gratitude to Sympatec Ltd, Waterfold House, Bury, BL9 7BR for providing use of the Sympatec HELOS BF/MAGIC® system with the Inhaler 2000 module to perform this study. We would like to thank Mr. Jonathan Veal and Mr. Anthony Dunmore for their technical assistance. The original MRI data to manufacture the oropharyngeal models were obtained from a study that was sponsored by AstraZeneca R&D Charnwood, and this study was reported previously (15).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Ehtezazi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

On-line Supplementary Material

A) Midsaggital magnetic resonance images of subjects while inhaling via inhalers. B) Cross sectional area distributions of the 2C, 4A, 5A, and 6B oropharyngeal geometries via a circular mouthpiece and low airflow resistance device. C) Cross sectional area distributions of the 1C, 3A, and 7B oropharyngeal geometries via a rectangular mouthpiece and low airflow resistance device. Open circular symbols present the 1C geometry, filled circular symbols show the 2C geometry, open square symbols depict the 3A geometry, filled triangle symbols depict the 4A geometry, filled square symbols illustrate the 5A geometry, filled diamond symbols present the 6B geometry, and open diamond symbols illustrate the 7B geometry.

High resolution image

(TIFF 220 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ehtezazi, T., Saleem, I., Shrubb, I. et al. The Interaction Between the Oropharyngeal Geometry and Aerosols via Pressurised Metered Dose Inhalers. Pharm Res 27, 175–186 (2010). https://doi.org/10.1007/s11095-009-9994-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-009-9994-z

KEY WORDS

Navigation