Skip to main content

Advertisement

Log in

Polyethylene Glycol-Conjugated Copolymers for Plasmid DNA Delivery

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

No Heading

Polymeric gene delivery systems have been developed as an alternative for viral gene delivery systems to overcome the problems in the use of viral gene carriers. Polymeric carriers have many advantages as gene carriers such as low cytotoxicity, low immunogenicity, moderate transfection efficiency, no size-limit, low cost, and reproducibility. In the efforts to develop safe and efficient polymeric gene carriers, polyethylene glycol (PEG) has widely been used because of its excellent characteristics. PEG-conjugated copolymers have advantages for gene delivery: 1) The PEG-conjugated copolymers show low cytotoxicity to cells in vitro and in vivo, 2) PEG increases water-solubility of the polymer/DNA complex, 3) PEG reduces the interaction of the polymer/DNA complex with serum proteins and increases circulation time of the complex, 4) PEG can be used as a spacer between a targeting ligand and a cationic polymer. A targeting ligand at the end of a PEG chain is not disturbed by the interaction of a cationic polymer with plasmid DNA, and the PEG spacer increases the accessibility of the ligand to its receptor. In this review, PEG copolymers as gene carriers are introduced, and their characteristics are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. 1. M. L. Edelstein, M. R. Abedi, J. Wixon, and R. M. Edelstein. Gene therapy clinical trials worldwide 1989–2004—an overview. J. Gene Med. 6:597–602 (2004).

    Google Scholar 

  2. 2. M. Lee and S. W. Kim. Polymeric gene carriers. Pharm. News 9:407–415 (2002).

    Google Scholar 

  3. 3. G. Y. Wu and C. H. Wu. Receptor-mediated in vitro gene transformation by a soluble DNA carrier system. J. Biol. Chem. 262:4429–4432 (1987).

    Google Scholar 

  4. 4. G. Y. Wu and C. H. Wu. Evidence for targeted gene delivery to Hep G2 hepatoma cells in vitro. Biochemistry 27:887–892 (1988).

    Google Scholar 

  5. 5. G. Y. Wu, J. M. Wilson, F. Shalaby, M. Grossman, D. A. Shafritz, and C. H. Wu. Receptor-mediated gene delivery in vivo. Partial correction of genetic analbuminemia in Nagase rats. J. Biol. Chem. 266:14338–14342 (1991).

    Google Scholar 

  6. 6. S. Zalipsky and J. M. Harris. Introduction to chemistry and biological applications of poly(ethylene glycol). In J. M. Harris and S. Zalipsky (eds.), Poly(ehtylene glycol): Chemistry and Biological Applications, Vol. 680. ACS Symposium Series. American Chemical Society, Washington, DC, 1997, pp. 1–13.

    Google Scholar 

  7. 7. E. Wagner, M. Cotton, R. Foisner, and M. L. Birnstiel. Transferrin-polycation-DNA complexes: the effect of polycations on the structure of the complex and DNA delivery to cells. Proc. Natl. Acad. Sci. USA 88:4255–4259 (1991).

    Google Scholar 

  8. 8. M. Lee, J. Rentz, S. Han, D. A. Bull, and S. W. Kim. Water soluble lipopolymer as an efficient carrier for gene delivery to myocardium. Gene Ther. 10:585–593 (2003).

    Google Scholar 

  9. 9. J. H. Jeong and T. G. Park. Poly(L-lysine)-g-poly(D, L-lactic-co-glycolic acid) micelles for low cytotoxic biodegradable gene carriers. J. Control. Rel. 82:159–166 (2002).

    Google Scholar 

  10. 10. D. Y. Kwoh, C. C. Coffin, C. P. Lollo, J. Jovenal, M. G. Banaszczyk, P. Mullen, A. Phillips, A. Amini, J. Fabrycki, R. M. Bartholomew, S. W. Brostoff, and D. J. Carlo. Stabilization of poly-L-lysine/DNA polyplexes for in vivo gene delivery to the liver. Biochim. Biophys. Acta 1444:171–190 (1999).

    Google Scholar 

  11. 11. M. Ogris, S. Brunner, S. Schuller, R. Kircheis, and E. Wagner. PEGylated DNA/transferrin-PEI complexes: reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery. Gene Ther. 6:595–605 (1999).

    Google Scholar 

  12. 12. P. R. Dash, V. Toncheva, E. Schacht, and L. W. Seymour. Synthetic polymers for vectorial delivery of DNA: characterisation of polymer-DNA complexes by photon correlation spectroscopy and stability to nuclease degradation and disruption by polyanions in vitro. J. Control. Rel. 48:269–276 (1997).

    Google Scholar 

  13. 13. A. V. Kabanov and V. A. Kabanov. DNA complexes with polycations for the delivery of genetic material into cells. Bioconjug. Chem. 6:7–20 (1995).

    Google Scholar 

  14. 14. M. A. Wolfert, E. H. Schacht, V. Toncheva, K. Ulbrich, O. Nazarova, and L. W. Seymour. Characterization of vectors for gene therapy formed by self-assembly of DNA with synthetic block copolymers. Hum. Gene Ther. 7:2123–2133 (1996).

    Google Scholar 

  15. 15. S. Katayose and K. Kataoka. Water-soluble polyion complex associates of DNA and poly(ethylene glycol)-poly(L-lysine) block copolymer. Bioconjug. Chem. 8:702–707 (1997).

    Google Scholar 

  16. 16. S. Katayose and K. Kataoka. Remarkable increase in nuclease resistance of plasmid DNA through supramolecular assembly with poly(ethylene glycol)-poly(L-lysine) block copolymer. J. Pharm. Sci. 87:160–163 (1998).

    Google Scholar 

  17. 17. A. Harada, H. Togawa, and K. Kataoka. Physicochemical properties and nuclease resistance of antisense-oligodeoxynucleotides entrapped in the core of polyion complex micelles composed of poly(ethylene glycol)-poly(L-lysine) block copolymers. Eur. J. Pharm. Sci. 13:35–42 (2001).

    Google Scholar 

  18. 18. M. Harada-Shiba, K. Yamauchi, A. Harada, I. Takamisawa, K. Shimokado, and K. Kataoka. Polyion complex micelles as vectors in gene therapy—pharmacokinetics and in vivo gene transfer. Gene Ther. 9:407–414 (2002).

    Google Scholar 

  19. 19. J. S. Choi, E. J. Lee, Y. H. Choi, Y. J. Jeong, and J. S. Park. Poly-(ethylene glycol)-block-poly(L-lysine) dendrimer: novel linear polymer/dendrimer block copolymer forming a spherical water-soluble polyionic complex with DNA. Bioconjug. Chem. 10:62–65 (1999).

    Google Scholar 

  20. 20. J. S. Choi, D. K. Joo, C. H. Kim, K. Kim, and J. S. Park. Synthesis of a barbell-like triblock, poly(L-lysine) dendrimer-block-poly-(ethylene glycol)-block-poly(L-lysine) dendrimer, and its self-assembly with plasmid DNA. J. Am. Chem. Soc. 122:474–480 (2000).

    Google Scholar 

  21. 21. M. Bikram, C. H. Ahn, S. Y. Chae, M. Lee, J. W. Yockman, and S. W. Kim. Biodegradable poly(ethylene glycol)-co-poly(L-lysine)-g-histidine multiblock copolymers for nonviral gene delivery. Macromolecules 37:1903–1916 (2004).

    Google Scholar 

  22. 22. Y. H. Choi, F. Liu, J. S. Kim, Y. K. Choi, J. S. Park, and S. W. Kim. Polyethylene glycol-grafted poly-L-lysine as polymeric gene carrier. J. Control. Rel. 54:39–48 (1998).

    Google Scholar 

  23. 23. M. Lee, S. O. Han, K. S. Ko, J. J. Koh, J. S. Park, J. W. Yoon, and S. W. Kim. Repression of GAD autoantigen expression in pancreas beta-Cells by delivery of antisense plasmid/PEG-g-PLL complex. Mol. Ther. 4:339–346 (2001).

    Google Scholar 

  24. 24. J. W. Yoon, C. S. Yoon, H. W. Lim, Q. Q. Huang, Y. Kang, K. H. Pyun, K. Hirasawa, R. S. Sherwin, and H. S. Jun. Control of autoimmune diabetes in NOD mice by GAD expression or suppression in beta cells. Science 284:1183–1187 (1999).

    Google Scholar 

  25. 25. V. Toncheva, M. A. Wolfert, P. R. Dash, D. Oupicky, K. Ulbrich, L. W. Seymour, and E. H. Schacht. Novel vectors for gene delivery formed by self-assembly of DNA with poly(L-lysine) grafted with hydrophilic polymers. Biochim. Biophys. Acta 1380:354–368 (1998).

    Google Scholar 

  26. 26. O. Boussif. F. Lezoualc’h, M. A. Zanta, M. D. Mergny, D. Scherman, B. Demeneix, and J. P. Behr. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. Natl. Acad. Sci. USA 92:7297–7301 (1995).

    Google Scholar 

  27. 27. O. Boussif, M. A. Zanta, and J. P. Behr. Optimized galenics improve in vitro gene transfer with cationic molecules up to 1000-fold. Gene Ther. 3:1074–1080 (1996).

    Google Scholar 

  28. 28. D. D. Dunlap, A. Maggi, M. R. Soria, and L. Monaco. Nanoscopic structure of DNA condensed for gene delivery. Nucleic Acids Res. 25:3095–3101 (1997).

    Google Scholar 

  29. 29. W. T. Godbey, K. K. Wu, and A. G. Mikos. Poly(ethylenimine) and its role in gene delivery. J. Control. Rel. 60:149–160 (1999).

    Google Scholar 

  30. 30. H. Petersen, P. M. Fechner, A. L. Martin, K. Kunath, S. Stolnik, C. J. Roberts, D. Fischer, M. C. Davies, and T. Kissel. Polyethylenimine-graft-poly(ethylene glycol) copolymers: influence of copolymer block structure on DNA complexation and biological activities as gene delivery system. Bioconjug. Chem. 13:845–854 (2002).

    Google Scholar 

  31. 31. L. Shi, G. P. Tang, S. J. Gao, Y. X. Ma, B. H. Liu, Y. Li, J. M. Zeng, Y. K. Ng, K. W. Leong, and S. Wang. Repeated intrathecal administration of plasmid DNA complexed with polyethylene glycol-grafted polyethylenimine led to prolonged transgene expression in the spinal cord. Gene Ther. 10:1179–1188 (2003).

    Google Scholar 

  32. 32. H. Petersen, K. Kunath, A. L. Martin, S. Stolnik, C. J. Roberts, M. C. Davies, and T. Kissel. Star-shaped poly(ethylene glycol)-block-polyethylenimine copolymers enhance DNA condensation of low molecular weight polyethylenimines. Biomacromolecules 3:926–936 (2002).

    Google Scholar 

  33. 33. A. Kichler, M. Chillon, C. Leborgne, O. Danos, and B. Frisch. Intranasal gene delivery with a polyethylenimine-PEG conjugate. J. Control. Rel. 81:379–388 (2002).

    Google Scholar 

  34. 34. C. H. Ahn, S. Y. Chae, Y. H. Bae, and S. W. Kim. Biodegradable poly(ethylenimine) for plasmid DNA delivery. J. Control. Rel. 80:273–282 (2002).

    Google Scholar 

  35. 35. R. Kircheis, S. Schuller, S. Brunner, M. Ogris, K. H. Heider, W. Zauner, and E. Wagner. Polycation-based DNA complexes for tumor-targeted gene delivery in vivo. J. Gene Med. 1:111–120 (1999).

    Google Scholar 

  36. 36. R. Kircheis, T. Blessing, S. Brunner, L. Wightman, and E. Wagner. Tumor targeting with surface-shielded ligand-polycation DNA complexes. J. Control. Rel. 72:165–170 (2001).

    Google Scholar 

  37. 37. C. Rudolph, U. Schillinger, C. Plank, A. Gessner, P. Nicklaus, R. Muller, and J. Rosenecker. Nonviral gene delivery to the lung with copolymer-protected and transferrin-modified polyethylenimine. Biochim. Biophys. Acta 1573:75–83 (2002).

    Google Scholar 

  38. 38. D. Oupicky, M. Ogris, K. A. Howard, P. R. Dash, K. Ulbrich, and L. W. Seymour. Importance of lateral and steric stabilization of polyelectrolyte gene delivery vectors for extended systemic circulation. Mol. Ther. 5:463–472 (2002).

    Google Scholar 

  39. 39. W. Suh, S. O. Han, L. Yu, and S. W. Kim. An angiogenic, endothelial-cell-targeted polymeric gene carrier. Mol. Ther. 6:664–672 (2002).

    Google Scholar 

  40. 40. P. C. Brooks, R. A. Clark, and D. A. Cheresh. Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 264:569–571 (1994).

    Google Scholar 

  41. 41. D. A. Sipkins, D. A. Cheresh, M. R. Kazemi, L. M. Nevin, M. D. Bednarski, and K. C. Li. Detection of tumor angiogenesis in vivo by alphaVbeta3-targeted magnetic resonance imaging. Nat. Med. 4:623–626 (1998).

    Google Scholar 

  42. 42. G. Gasparini, P. C. Brooks, E. Biganzoli, P. B. Vermeulen, E. Bonoldi, L. Y. Dirix, G. Ranieri, R. Miceli, and D. A. Cheresh. Vascular integrin alpha(v)beta3: a new prognostic indicator in breast cancer. Clin. Cancer Res. 4:2625–2634 (1998).

    Google Scholar 

  43. 43. A. Erdreich-Epstein, H. Shimada, S. Groshen, M. Liu, L. S. Metelitsa, K. S. Kim, M. F. Stins, R. C. Seeger, and D. L. Durden. Integrins alpha(v)beta3 and alpha(v)beta5 are expressed by endothelium of high-risk neuroblastoma and their inhibition is associated with increased endogenous ceramide. Cancer Res. 60:712–721 (2000).

    Google Scholar 

  44. 44. K. Kunath, T. Merdan, O. Hegener, H. Haberlein, and T. Kissel. Integrin targeting using RGD-PEI conjugates for in vitro gene transfer. J. Gene Med. 5:588–599 (2003).

    Google Scholar 

  45. 45. P. Midoux, C. Mendes, A. Legrand, J. Raimond, R. Mayer, M. Monsigny, and A. C. Roche. Specific gene transfer mediated by lactosylated poly-L-lysine into hepatoma cells. Nucleic Acids Res. 21:871–878 (1993).

    Google Scholar 

  46. 46. M. Hashida, S. Takemura, M. Nishikawa, and Y. Takakura. Targeted delivery of plasmid DNA complexed with galactosylated poly(L-lysine). J. Control. Rel. 53:301–310 (1998).

    Google Scholar 

  47. 47. M. Nishikawa, S. Takemura, Y. Takakura, and M. Hashida. Targeted delivery of plasmid DNA to hepatocytes in vivo: optimization of the pharmacokinetics of plasmid DNA/galactosylated poly(L-lysine) complexes by controlling their physicochemical properties. J. Pharmacol. Exp. Ther. 287:408–415 (1998).

    Google Scholar 

  48. 48. R. I. Mahato, S. Takemura, K. Akamatsu, M. Nishikawa, Y. Takakura, and M. Hashida. Physicochemical and disposition characteristics of antisense oligonucleotides complexed with glycosylated poly(L-lysine). Biochem. Pharmacol. 53:887–895 (1997).

    Google Scholar 

  49. 49. Y. H. Choi, F. Liu, J. S. Park, and S. W. Kim. Lactose-poly(ethylene glycol)-grafted poly-L-lysine as hepatoma cell-targeted gene carrier. Bioconjug. Chem. 9:708–718 (1998).

    Google Scholar 

  50. 50. Y. H. Choi, F. Liu, J. S. Choi, S. W. Kim, and J. S. Park. Characterization of a targeted gene carrier, lactose-polyethylene glycol-grafted poly-L-lysine and its complex with plasmid DNA. Hum. Gene Ther. 10:2657–2665 (1999).

    Google Scholar 

  51. 51. T. Bettinger, J. S. Remy, and P. Erbacher. Size reduction of galactosylated PEI/DNA complexes improves lectin-mediated gene transfer into hepatocytes. Bioconjug. Chem. 10:558–561 (1999).

    Google Scholar 

  52. 52. K. Sagara and S. W. Kim. A new synthesis of galactose-poly(ethylene glycol)-polyethylenimine for gene delivery to hepatocytes. J. Control. Rel. 79:271–281 (2002).

    Google Scholar 

  53. 53. R. J. Havel. Receptor and non-receptor mediated uptake of chylomicron remnants by the liver. Atherosclerosis 141:S1–S7 (1998).

    Google Scholar 

  54. 54. I. L. Shih, R. S. Lees, M. Y. Chang, and A. M. Lees. Focal accumulation of an apolipoprotein B-based synthetic oligopeptide in the healing rabbit arterial wall. Proc. Natl. Acad. Sci. USA 87:1436–1440 (1990).

    Google Scholar 

  55. 55. M. Lougheed, E. D. Moore, D. R. Scriven, and U. P. Steinbrecher. Uptake of oxidized LDL by macrophages differs from that of acetyl LDL and leads to expansion of an acidic endolysosomal compartment. Arterioscler. Thromb. Vasc. Biol. 19:1881–1890 (1999).

    Google Scholar 

  56. 56. J. W. Nah, L. Yu, S. O. Han, C. H. Ahn, and S. W. Kim. Artery wall binding peptide-poly(ethylene glycol)-grafted-poly(L-lysine)-based gene delivery to artery wall cells. J. Control. Rel. 78:273–284 (2002).

    Google Scholar 

  57. 57. J. J. Turek, C. P. Leamon, and P. S. Low. Endocytosis of folate-protein conjugates: ultrastructural localization in KB cells. J. Cell Sci. 106:423–430 (1993).

    Google Scholar 

  58. 58. S. Wang and P. S. Low. Folate-mediated targeting of antineoplastic drugs, imaging agents, and nucleic acids to cancer cells. J. Control. Rel. 53:39–48 (1998).

    Google Scholar 

  59. 59. K. A. Mislick, J. D. Baldeschwieler, J. F. Kayyem, and T. J. Meade. Transfection of folate-polylysine DNA complexes: evidence for lysosomal delivery. Bioconjug. Chem. 6:512–515 (1995).

    Google Scholar 

  60. 60. C. M. Ward, M. Pechar, D. Oupicky, K. Ulbrich, and L. W. Seymour. Modification of pLL/DNA complexes with a multivalent hydrophilic polymer permits folate-mediated targeting in vitro and prolonged plasma circulation in vivo. J. Gene Med. 4:536–547 (2002).

    Google Scholar 

  61. 61. C. P. Leamon, D. Weigl, and R. W. Hendren. Folate copolymer-mediated transfection of cultured cells. Bioconjug. Chem. 10:947–957 (1999).

    Google Scholar 

  62. 62. J. M. Benns, A. Maheshwari, D. Y. Furgeson, R. I. Mahato, and S. W. Kim. Folate-PEG-folate-graft-polyethylenimine-based gene delivery. J. Drug Target. 9:123–139 (2001).

    Google Scholar 

  63. 63. J. M. Benns, R. I. Mahato, and S. W. Kim. Optimization of factors influencing the transfection efficiency of folate-PEG-folate-graft-polyethylenimine. J. Control. Rel. 79:255–269 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung Wan Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, M., Kim, S. Polyethylene Glycol-Conjugated Copolymers for Plasmid DNA Delivery. Pharm Res 22, 1–10 (2005). https://doi.org/10.1007/s11095-004-9003-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-004-9003-5

Key words:

Navigation