Skip to main content
Log in

On the Gas Heating Mechanism for the Fast Anode Arc Reattachment in a Non-transferred Arc Plasma Torch Operating with Nitrogen Gas in the Restrike Mode

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The present work provides a detailed kinetic analysis of the time-resolved dynamics of the gas heating during the arc reattachment in nitrogen gas in order to understand the main processes leading to such a fast reattachment. The model includes gas heating due to the relaxation of the energy stored in the vibrational as well as the electronic modes of the molecules. The results show that the anode arc reattachment is essentiality a threshold process, corresponding to a reduced electric field value of E/N ~ 40 Td for the plasma discharge conditions considered in this work. The arc reattachment is triggered by a vibrational instability whose development requires a time of the order of 100 µs. For E/N < 80–100 Td, most of the electron energy is transferred to gas heating through the mechanism of vibrational–translational relaxation. For larger values of E/N the electronic–translational energy relaxation mechanism produces a further intensification of the gas heating. The sharp increase of the gas heating rate during the last few µs of the vibrational instability give rises to a sudden transition from a diffuse (glow-like) discharge to a constricted arc with a high current density (~107 A/m2). This sudden increase in the current density gives rise to a new anode attachment closer to the cathode (where the voltage drop between the original arc and the anode is the largest) thus causing the decay of the old arc spot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Boulos M, Fauchais P, Pfender E (1994) Thermal plasmas, fundamentals and applications, vol 1. Plenum Press, New York and London

    Book  Google Scholar 

  2. Fauchais P (2004) J Phys D Appl Phys 37:R86–R108

    Article  CAS  Google Scholar 

  3. Vilotijevic M, Dacic B, Bozic D (2008) Plasma Sources Sci Technol 18:8

    Google Scholar 

  4. Fauchais P, Vardelle A (2000) Plasma Phys Control Fusion 42:B365–B383

    Article  CAS  Google Scholar 

  5. Prevosto L, Kelly H, Mancinelli B (2013) Rev Sci Instrum 85:7

    Google Scholar 

  6. Moreau E, Chazelas C, Mariaux G, Vardelle A (2006) J Therm Spray Technol 15:524–530

    Article  Google Scholar 

  7. Trelles JP, Heberlein JVR, Pfender E (2007) J Phys D Appl Phys 40:5937–5950

    Article  CAS  Google Scholar 

  8. Heberlein J, Mentel J, Pfender E (2010) J Phys D Appl Phys 43:31

    Article  Google Scholar 

  9. Raizer YP (1991) Gas discharge physics. Springer, Berlin

    Book  Google Scholar 

  10. Nemchinsky V (2014) IEEE Trans Plasma Sci 42:4026–4030

    Article  CAS  Google Scholar 

  11. Capitelli M, Ferreira CM, Gordiets BF, Osipov AI (2000) Plasma kinetics in atmospheric gases. Springer, New York

    Book  Google Scholar 

  12. Fridman A, Kennedy L (2004) Plasma physics and engineering. Taylor & Francis, New York

    Book  Google Scholar 

  13. Popov NA (2001) Plasma Phys Rep 27:886–896

    Article  Google Scholar 

  14. Popov NA (2011) J Phys D Appl Phys 44:16

    Article  Google Scholar 

  15. Mintoussov EI, Pendleton SJ, Gerbault FG, Popov NA, Starikovskaia SM (2011) J Phys D Appl Phys 44:13

    Article  Google Scholar 

  16. Aleksandrov NL, Kindysheva SV, Nudnoval MM, Starikovskiy AY (2010) J Phys D Appl Phys 43:19

    Article  Google Scholar 

  17. Boeuf JP, Kunhardt EE (1986) J Appl Phys 60:915–923

    Article  CAS  Google Scholar 

  18. Hagelaar GJH, Pitchford LC (2005) Plasma Sources Sci Technol 14:722–733

    Article  CAS  Google Scholar 

  19. Bacri J, Medani A (1982) Physica C 112:101–118

    Article  CAS  Google Scholar 

  20. Benilov MS, Naidis GV (2003) J Phys D Appl Phys 36:1834–1841

    Article  CAS  Google Scholar 

  21. Gordiets BF, Ferreira CM, Guerra VL, Loureiro J, Nahorny J, Pagnon D, Touzeau M, Vialle M (1995) IEEE Trans Plasma Sci 23:750–768

    Article  CAS  Google Scholar 

  22. Raizer YP, Shneider MN, Yatsenko NA (1995) Radio-frequency capacitive discharges. CRC, Boca Raton

    Google Scholar 

  23. Cao YS, Johnsen R (1991) J Chem Phys 95:7356–7359

    Article  CAS  Google Scholar 

  24. Shneider MN, Mokrov MS, Milikh GM (2012) Phys Plasmas 19:4

    Google Scholar 

  25. Wutzke SA, Pfender E, Eckert ERG (1967) IAAA J 5:707–714

    Google Scholar 

  26. Prevosto L, Kelly H, Mancinelli B, Chamorro JC, Cejas E (2015) Phys Plasmas 22:9

    Article  Google Scholar 

  27. Brunet N, RoccaSerra J (1985) J Appl Phys 57:1574–1581

    Article  CAS  Google Scholar 

  28. Popov NA (2009) Plasma Phys Rep 35:436–449

    Article  CAS  Google Scholar 

  29. Nadler I, Rosenwaks S (1985) J Chem Phys 83:3932–3940

    Article  CAS  Google Scholar 

  30. Piper LG (1988) J Chem Phys 88:231–239

    Article  CAS  Google Scholar 

  31. Guerra V, Loureiro J (1997) Plasma Sources Sci Technol 6:361–372

    Article  CAS  Google Scholar 

  32. Kossyi IA, Kostinsky AY, Matveyev AA, Silakov VP (1992) Plasma Sources Sci Technol 1:207–220

    Article  CAS  Google Scholar 

  33. Bourdon A, Vervisch P (1996) Phys Rev E 54:1888–1898

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the CONICET (PIP 11220120100453) and Universidad Tecnológica Nacional (PID 2264). L. P. and H. K. are members of the CONICET. J. C. C. thanks the CONICET for his doctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Prevosto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prevosto, L., Kelly, H., Mancinelli, B. et al. On the Gas Heating Mechanism for the Fast Anode Arc Reattachment in a Non-transferred Arc Plasma Torch Operating with Nitrogen Gas in the Restrike Mode. Plasma Chem Plasma Process 35, 1057–1070 (2015). https://doi.org/10.1007/s11090-015-9644-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-015-9644-7

Keywords

Navigation