Skip to main content
Log in

Numerical integration in log-Korobov and log-cosine spaces

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Quasi-Monte Carlo (QMC) rules are equal weight quadrature rules for approximating integrals over the s-dimensional unit cube [0, 1]s. One line of research studies the integration error of functions in the unit ball of so-called Korobov spaces, which are Hilbert spaces of periodic functions on [0, 1]s with square integrable partial mixed derivatives of order α. Using Parseval’s identity, this smoothness can be defined for all real numbers α > 1/2. In this setting, the condition α > 1/2 is necessary as otherwise the Korobov space contains discontinuous functions for which function evaluation is not well defined. This paper is concerned with more precise endpoint estimates of the integration error using QMC rules for Korobov spaces with α arbitrarily close to 1/2. To obtain such estimates we introduce a log-scale for function spaces with smoothness close to 1/2, which we call log-Korobov spaces. We show that lattice rules can be used to obtain an integration error of order \(\mathcal {O}(N^{-1/2} (\log N)^{-\mu (1-\lambda )/2})\) for any 1/μ < λ ≤ 1, where μ > 1 is a certain power in the log-scale. A second result is concerned with tractability of numerical integration for weighted Korobov spaces with product weights \((\gamma _{j})_{j \in \mathbb {N}}\). Previous results have shown that if \({\sum }_{j=1}^{\infty } \gamma _{j}^{\tau } < \infty \) for some 1/(2α) < τ ≤ 1 one can obtain error bounds which are independent of the dimension. In this paper we give a more refined estimate for the case where τ is close to 1/(2α), namely we show dimension independent error bounds under the condition that \({\sum }_{j=1}^{\infty } \gamma _{j} \max \{1, \log \gamma _{j}^{-1}\}^{\mu (1-\lambda )} < \infty \) for some 1/μ < λ ≤ 1. The essential tool in our analysis is a log-scale Jensen’s inequality.The results described above also apply to integration in log-cosine spaces using tent-transformed lattice rules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1964)

    MATH  Google Scholar 

  2. Aronszajn, N.: Theory of reproducing kernels. Trans. Amer. Math. Soc. 68, 337–404 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cools, R., Kuo, F.Y., Nuyens, D.: Constructing embedded lattice rules for multivariate integration. SIAM J. Sci. Comput. 28, 2162–2188 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dick, J.: On the convergence rate of the component-by-component construction of good lattice rules. J. Complex. 20, 493–522 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dick, J., Kritzer, P., Leobacher, G., Pillichshammer, F.: A reduced fast component-by-component construction of lattice points for integration in weighted spaces with fast decreasing weights. J. Comput. Appl. Math. 276, 1–15 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dick, J., Kuo, F.Y., Sloan, I.H.: High-dimensional integration: the quasi-Monte Carlo way. Acta Numer. 22, 133–288 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dick, J., Nuyens, D., Pillichshammer, F.: Lattice rules for nonperiodic smooth integrands. Numer. Math. 126, 259–291 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dick, J., Pillichshammer, F.: Digital Nets and Sequences. Discrepancy Theory and Quasi-Monte Carlo Integration. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  9. Dick, J., Pillichshammer, F., Waterhouse, B.J.: The construction of good extensible rank-1 lattices. Math. Comp. 77, 2345–2373 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hickernell, F.J.: A generalized discrepancy and quadrature error bound. Math. Comp. 67, 299–322 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hickernell, F.J.: Obtaining O(N −2+ε) convergence for lattice quadrature rules. In: K.T. Fang, F.J. Hickernell, H. Niederreiter (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2000 (Hong Kong), pp 274–289. Springer, Berlin (2002)

  12. Hickernell, F.J., Woźniakowski, H.: Tractability of multivariate integration for periodic functions. J. Complex. 17, 660–682 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Korobov, N.M.: The approximate computation of multiple integrals (in Russian). Dokl. Akad. Nauk SSSR 124, 1207–1210 (1959)

    MathSciNet  MATH  Google Scholar 

  14. Kuo, F.Y.: Component-by-component constructions achieve the optimal rate of convergence for multivariate integration in weighted Korobov and Sobolev spaces. Numerical integration and its complexity (Oberwolfach, 2001). J. Complex. 19, 301–320 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kuo, F.Y., Schwab, C., Sloan, I.H.: Quasi-Monte Carlo finite element methods for a class of elliptic partial differential equations with random coefficients. SIAM J. Numer. Anal. 50, 3351–3374 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Leobacher, G., Pillichshammer, F.: Introduction to Quasi-Monte Carlo Integration and Applications. Springer, Birkhäuser (2014)

    Book  MATH  Google Scholar 

  17. Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo methods. CBMS-NSF Regional Conference Series in Applied Mathematics, 63. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1992)

    Book  Google Scholar 

  18. Novak, E., Woźniakowski, H.: Tractability of Multivariate Problems, Volume 1: Linear Information. European Mathematical Society, Zürich (2008)

    Book  Google Scholar 

  19. Novak, E., Woźniakowski, H.: Tractability of Multivariate Problems, Volume 2: Standard Information for Functionals. European Mathematical Society, Zürich (2010)

    Book  Google Scholar 

  20. Nuyens, D., Cools, R.: Fast algorithms for component-by-component construction of rank-1 lattice rules in shift-invariant reproducing kernel Hilbert spaces. Math. Comp. 75, 903–920 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nuyens, D., Cools, R.: Fast component-by-component construction, a reprise for different kernels. In: A. Keller, S. Heinrich, H. Niederreiter (eds.), Monte Carlo and Quasi-Monte Carlo Methods 2004, pp 373–387. Springer, Berlin (2006)

  22. Sloan, I.H., Kuo, F.Y., Joe, S.: Constructing randomly shifted lattice rules in weighted Sobolev spaces. SIAM. J. Numer. Anal. 40, 1650–1665 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sloan, I.H., Reztsov, A.V.: Component-by-component construction of good lattice rules. Math. Comp. 71, 263–273 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sloan, I.H., Woźniakowski, H.: Tractability of multivariate integration for weighted Korobov classes. Complexity of multivariate problems (Kowloon, 1999). J. Complex. 17, 697–721 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Traub, J.F., Wasilkowski, G.W., Woźniakowski, H.: Information-Based Complexity. Academic Press, New York (1988)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Kritzer.

Additional information

Josef Dick is the recipient of an Australian Research Council Queen Elizabeth II Fellowship (project number DP1097023).

P. Kritzer is supported by the Austrian Science Fund (FWF): Project F5506-N26, which is a part of the Special Research Program ”Quasi-Monte Carlo Methods: Theory and Applications”.

G. Leobacher is supported by the Austrian Science Fund (FWF): Project F5508-N26, which is a part of the Special Research Program ”Quasi-Monte Carlo Methods: Theory and Applications”.

F. Pillichshammer is supported by the Austrian Science Fund (FWF): Project F5509-N26, which is a part of the Special Research Program ”Quasi-Monte Carlo Methods: Theory and Applications”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dick, J., Kritzer, P., Leobacher, G. et al. Numerical integration in log-Korobov and log-cosine spaces. Numer Algor 70, 753–775 (2015). https://doi.org/10.1007/s11075-015-9972-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-015-9972-y

Keywords

Mathematics Subject Classification (2010)

Navigation