Skip to main content
Log in

Explicit Runge–Kutta pairs with lower stage-order

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Explicit Runge–Kutta pairs of methods of successive orders of accuracy provide effective algorithms for approximating solutions to nonstiff initial value problems. For each explicit RK method of order of accuracy p, there is a minimum number s p of derivative evaluations required for each step propagating the numerical solution. For p ≤ 8, Butcher has established exact values of s p , and for p > 8, his work establishes lower bounds; otherwise, upper bounds are established by various published methods. Recently, Khashin has derived some new methods numerically, and shown that the known upper bound on s 9 for methods of order p = 9 can be reduced from 15 to 13. His results motivate this attempt to identify parametrically exact representations for coefficients of such methods. New pairs of methods of orders 5,6 and 6,7 are characterized in terms of several arbitrary parameters. This approach, modified from an earlier one, increases the known spectrum of types of RK pairs and their derivations, may lead to the derivation of new RK pairs of higher-order, and possibly to other types of explicit algorithms within the class of general linear methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albrecht, P.: A new theoretical approach to Runge–Kutta methods. SIAM J. Numer. Anal. 24, 391–406 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  2. Butcher, J.C.: Coefficients for the study of Runge–Kutta integration processess. J. Aust. Math. Soc. 3, 185–201 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  3. Butcher, J.C.: On Runge–Kutta processess of high order. J. Aust. Math. Soc. 4, 179–194 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  4. Butcher, J.C.: An order bound for Runge–Kutta methods. SIAM J. Numer. Anal. 12, 304–315 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  5. Butcher, J.C.: The nonexistence of ten-stage eighth order explicit Runge-Kutta methods. BIT 25, 521–540 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  6. Butcher, J.C.: Numerical Methods for Ordinary Differential Equations, 2nd ed. Wiley, Chichester (2008). doi:10.1002/9780470753767

  7. Butcher, J.C.: On fifth and sixth order explicit Runge–Kutta methods: order conditions and order barriers. Can. Appl. Math. Q. 17, 433–445 (2009)

    MATH  MathSciNet  Google Scholar 

  8. Cassity, C.R.: The complete solution of the fifth-order Runge–Kutta equations. SIAM J. Numer. Anal. 3, 432–436 (1969)

    Article  MathSciNet  Google Scholar 

  9. Cooper, G.J., Verner, J.H.: Some explicit Runge–Kutta methods of high order. SIAM J. Numer. Anal. 9, 389–405 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dormand, J.R., Prince, P.J.: Runge–Kutta triples. J. Comp. Maths. Appl. 12A, 1007–1017 (1986)

    Article  MathSciNet  Google Scholar 

  11. Feagin, T.: An explicit Runge–Kutta method of order twelve. Private Communication (2009)

  12. Fehlberg, E.: Classical fifth-, sixth-, seventh-, and eighth-order Runge–Kutta formulas with stepsize control. NASA Technical Report NASA TR R-287, pp. 82. NASA Report (1968)

  13. Hairer, E.: A Runge–Kutta method of order 10. J. Inst. Maths. Appl. 21, 47–59 (1978)

    Article  MathSciNet  Google Scholar 

  14. Khashin, S.: A symbolic-numeric approach to the solution of the Butcher equations. Can. Appl. Math. Q. 17, 555–569 (2009)

    MATH  MathSciNet  Google Scholar 

  15. Konen, H.P., Luther, H.A.: Some singular explicit fifth order Runge–Kutta solutions. SIAM J. Numer. Anal. 4, 607–619 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  16. Ono, H.: On the 25 stage 12th order explicit Runge–Kutta method. JSIAM 16, 177–186 (2006)

    Google Scholar 

  17. Sharp, P.W., Verner, J.H.: Completely imbedded Runge–Kutta formula pairs. SIAM J. Numer. Anal. 31, 1169–1190 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  18. Verner, J.H.: Explicit Runge–Kutta methods with estimates of the local truncation error. SIAM J. Numer. Anal. 15, 772–790 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  19. Verner, J.H.: Families of imbedded Runge-Kutta methods. SIAM J. Numer. Anal. 16, 857–875 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  20. Verner, J.H.: A contrast of some Runge–Kutta formula pairs. SIAM J. Numer. Anal. 27, 1332–1344 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  21. Verner, J.H.: Some Runge–Kutta formula pairs. SIAM J. Numer. Anal. 28, 496–511 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  22. Verner, J.H.: A classification scheme for studying explicit Runge-Kutta pairs, Scientific Computing. Proceedings of the Fifth International Conference on Scientific Computations, pp 201–225. Benin City, Nigeria (1994)

  23. Verner, J.H.: Strategies for deriving explicit Runge-Kutta formula pairs. Ann. Numer. Math. 1, 225–244 (1994)

    MATH  MathSciNet  Google Scholar 

  24. Verner, J.H.: High-order explicit Runge-Kutta pairs with low stage order. Appl. Numer. Math. 22, 345–357 (1996)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. H. Verner.

Additional information

Dedicated to John C. Butcher in celebration of his eightieth birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verner, J.H. Explicit Runge–Kutta pairs with lower stage-order. Numer Algor 65, 555–577 (2014). https://doi.org/10.1007/s11075-013-9783-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-013-9783-y

Keywords

Mathematics Subject Classifications (2010)

Navigation