Skip to main content
Log in

A review of Bandlet methods for geometrical image representation

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

This article reviews bandlet approaches to geometric image representations. Orthogonal bandlets using an adaptive segmentation and a local geometric flow well suited to capture the anisotropic regularity of edge structures. They are constructed with a “bandletization” which is a local orthogonal transformation applied to wavelet coefficients. The approximation in these bandlet bases exhibits an asymptotically optimal decay for images that are regular outside a set of regular edges. These bandlets can be used to perform image compression and noise removal. More flexible orthogonal bandlets with less vanishing moments are constructed with orthogonal grouplets that group wavelet coefficients alon a multiscale association field. Applying a translation invariant grouplet transform over a translation invariant wavelet frame leads to state of the art results for image denoising and super-resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aguilar, J.C., Goodman, J.B.: Anisotropic mesh refinement for finite element methods based on error reduction. J. Comput. Appl. Math. 193(2), 497–515 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alpert, B.K.: Wavelets and Other Bases for Fast Numerical Linear Algebra, pp. 181–216. In: Chui, C.K. (ed.). Academic Press, San Diego, CA (1992)

  3. Candès, E., Donoho, D.: Curvelets: A Surprisingly Effective Nonadaptive Representation of Objects with Edges. Vanderbilt University Press, Nashville, TN (1999)

    Google Scholar 

  4. Cohen, A., deVore, R., Petrushev, P., Xu, H.: Non linear approximation and the space BV(ℝ2). Am. J. Math. 121, 587–628 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Daubechies, I.: Orthonormal bases of compactly supported wavelets. Commun. Pure and Appl. Math. 41, 909–996 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  6. Daubechies, I.: Ten Lectures on Wavelets. Society for Industrial and Applied Mathematics, Philadelphia, PA (1992)

    MATH  Google Scholar 

  7. Demaret, L., Dyn, N., Iske, A.: Image Compression by Linear Splines over Adaptive Triangulations. Technische Universitat München, Germany (2004)

    Google Scholar 

  8. Donoho, D.: Wedgelets: nearly-minimax estimation of edges. Ann. Stat. 27, 353–382 (1999)

    Article  MathSciNet  Google Scholar 

  9. Donoho, D., Johnstone, I.: Ideal spatial adaptation via wavelet shrinkage. Biometrika 81, 425–455 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dossal, C., Le Pennec, E., Mallat, S.: Bandlets image estimation and projection estimators, (2007) (Preprint)

  11. Dragotti, P.L., Vetterli, M.: Wavelet footprints: theory, algorithms and applications. IEEE Trans. Signal Process. 51(5), 1306–1323, Mat (2003)

    Article  MathSciNet  Google Scholar 

  12. Gu, X., Gortler, S., Hoppe, H.: Geometry images. In: Proc. of SIGGRAPH 2002, pp. 355–361 (2002)

  13. Le Pennec, E., Mallat, S.: Sparse Geometrical Image Approximation with Bandelets. IEEE Trans. Image Process. 14(4), 423–438 (2004)

    Article  MathSciNet  Google Scholar 

  14. Le Pennec, E., Mallat, S.: Bandelet image approximation and compression. SIAM J. Multiscale Model. Simul. 4(3), 992–1039 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Mallat, S.: Multiresolution approximations and wavelet orthonormal bases of L 2. Trans. Am. Math. Soc. 315, 69–87 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  16. Mallat, S.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Patt. Anal. Mach. Intell. 11(7), 674–693 (1989)

    Article  MATH  Google Scholar 

  17. Mallat, S.: A Wavelet Tour of Signal Processing. Academic, San Diego (1998)

    MATH  Google Scholar 

  18. Mallat, S.: Geometrical grouplets. (Oct, 2006) (Preprint)

  19. Mallat, S., Falzon, F.: Analysis of low bit rate image tranform coding. In: IEEE Trans. Signal Proc., Special Issue on Wavelets (1998)

  20. Matei, B., Cohen, A.: Nonlinear subdivison schemes: applications to image processing. In: Tutorials on Multiresolution in Geometric Modelling, pp. 93–97. Springer, Berlin Heidleberg New York (2002)

    Google Scholar 

  21. Meyer, Y.: Principe d’incertitude, bases hilbertiennes et algèbres d’opérateurs. In: Séminaire Bourbaki, vol. 662. Paris (1986)

  22. Meyer, Y.: Ondelettes et Opérateurs, vol. 1. Hermann, Paris (1990)

    Google Scholar 

  23. Peyré, G.: Géométrie multi-échelles pour les images et les textures. Ph.D. thesis, thèse, CMAP, Ecole Polytechnique, Palaiseau, France (2005)

  24. Peyré, G., Mallat, S.: Discrete bandelets with geometric orthogonal filters. In: ICIP (2005)

  25. Peyré, G., Mallat, S.: Surface compression with geometric bandelets. In: ACM Trans. Graphics, (SIGGRAPH’05) vol. 24, no. 3 (2005)

  26. Peyré, G., Mallat, S.: Orthogonal bandlet bases for geometric images approximation, Preprint Ceremade 2007-18, Jan. (2007)

  27. Shukla, R., Dragotti, P.L., Do, M., Vetterli, M.: Rate distortion optimized tree structured compression algorithms for piecewise smooth images. IEEE Trans. Image Process. 14(3), 343– 359 (2005)

    Article  MathSciNet  Google Scholar 

  28. Starck, J.-L., Elad, M., Donoho, D.L.: Redundant multiscale transforms and their application for morphological component analysis. Adv. Imaging and Electron Phys. 132, 287–348 (2004)

    Article  Google Scholar 

  29. Wakin, M., Romberg, J., Choi, H., Baraniuk, R.: Wavelet-domain approximation and compression of piecewise smooth images. IEEE Trans. Image Proc. 15(5), 1071–1087 (2005)

    Article  Google Scholar 

  30. Wertheimer, M.: Principles of perceptual organisation. In: Ellis, W.H. (ed.) Source Book of Gestalt Psychology. Trubner, London (1938)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Peyré.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mallat, S., Peyré, G. A review of Bandlet methods for geometrical image representation. Numer Algor 44, 205–234 (2007). https://doi.org/10.1007/s11075-007-9092-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-007-9092-4

Keywords

Navigation