Skip to main content

Advertisement

Log in

Gait optimization and energetics of ballistic walking for an underactuated biped with knees

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we study gait optimization of ballistic walking in order to understand the natural dynamics of an underactuated biped with knees. We also propose applications for our understandings. Our optimization problem is solved by fixing energy levels, and then, we attempt to explain how optimal gaits are formed by examining the role of each joint in speeding up. In addition, we explain some natural characteristics of walking. Based on the results, we propose a new cost function to generate various walking gaits, including the optimum. Finally, we evaluate and discuss the energy efficiency of our ballistic walker and other bipedal walkers including humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. It was known also as the specific energetic cost of transport [13] or total cost of transport [9] in other papers.

References

  1. Adolfsson, J., Dankowicz, H., Nordmark, A.: 3D passive walkers: finding periodic gaits in the presence of discontinuities. Nonlinear Dyn. 24(2), 205–229 (2001)

    Article  MATH  Google Scholar 

  2. Ahmadi, M., Buehler, M.: The ARL monopod II running robot: control and energetics. In: Proceedings of IEEE International Conference on Robotics Automation, vol. 3, pp. 1689–1694. Detroit, MI (1999)

  3. Ahmadi, M., Buehler, M.: Controlled passive dynamic running experiments with the ARL-monopod II. IEEE Trans. Robot. 22(5), 974–986 (2006)

    Article  Google Scholar 

  4. Alexander, R.M.: Walking made simple. Science 308(5718), 58–59 (2005)

    Google Scholar 

  5. Aoustin, Y., Formal’skii, A.M.: 3d walking biped: optimal swing of the arms. Multibody Syst. Dyn. 32(1), 55–66 (2014)

    Article  MathSciNet  Google Scholar 

  6. Aoustin, Y., Tlalolini Romero, D., Chevallereau, C., Aubin, S.: Impulsive control for a thirteen-link biped. In: Proceedings of International Workshop Advanced Motion Control, pp. 439–444. Istanbul, Turkey (2006)

  7. Asano, F., Luo, Z.W., Yamakita, M.: Biped gait generation and control based on a unified property of passive dynamic walking. IEEE Trans. Robot. 21(4), 754–762 (2005)

    Article  Google Scholar 

  8. Beletskii, V.V., Chudinov, P.S.: Parametric optimization in the problem of bipedal locomotion. Izvestiya AN SSSR Mekhanika Tverdogo Tela 12(1), 25–35 (1977)

    Google Scholar 

  9. Bhounsule, P.A., Cortell, J., Grewal, A., Hendriksen, B., Karssen, J.G.D., Ruina, A.: Low-bandwidth reflex-based control for lower power walking: 65 km on a single battery charge. Int. J. Robot. Res. 33(10), 1305–1321 (2014)

    Article  Google Scholar 

  10. Channon, P.H., Hopkins, S.H., Pham, D.T.: Derivation of optimal walking motions for a bipedal walking robot. Robotica 10(2), 165–172 (1992)

    Article  Google Scholar 

  11. Chevallereau, C., Aoustin, Y.: Optimal reference trajectories for walking and running of a biped robot. Robotica 19(5), 557–569 (2001)

    Article  Google Scholar 

  12. Choi, J.H., Grizzle, J.W.: Feedback control of an underactuated planar bipedal robot with impulsive foot action. Robotica 23(5), 567–580 (2005)

    Article  Google Scholar 

  13. Collins, S.H., Ruina, A., Tedrake, R., Wisse, M.: Efficient bipedal robots based on passive-dynamic walkers. Science 307(5712), 1082–1085 (2005)

    Article  Google Scholar 

  14. Collins, S.H., Wisse, M., Ruina, A.: A three-dimensional passive-dynamic walking robot with two legs and knees. Int. J. Robot. Res. 20(7), 607–615 (2001)

    Article  Google Scholar 

  15. Formal’skii, A.M.: Motion of anthropomorphic mechanism under impulsive control. In: Proceedings of Institute of Mechanics, Lomonosov Moscow State University, pp. 17–34 (1978) (in Russian)

  16. Formal’skii, A.M.: Ballistic walking design via impulsive control. J. Aerosp. Eng. 23(2), 129–138 (2010)

    Article  MathSciNet  Google Scholar 

  17. Gabrielli, G., von Kármán, T.: What price speed? Mech. Eng. 72(10), 775–781 (1950)

    Google Scholar 

  18. Garcia, M., Chatterjee, A., Ruina, A.: Efficiency, speed, and scaling of two-dimensional passive-dynamic walking. Dynam. Stabil. Syst. 15(2), 75–99 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Garcia, M., Chatterjee, A., Ruina, A., Coleman, M.: The simplest walking model: stability, complexity, and scaling. ASME J. Biomech. Eng. 120(2), 281–288 (1998)

    Article  Google Scholar 

  20. Goswami, A., Thuilot, B., Espiau, B.: A study of the passive gait of a compass-like biped robot: symmetry and chaos. Int. J. Robot. Res. 17(12), 1282–1301 (1998)

    Article  Google Scholar 

  21. Greenwood, D.T.: Principles of Dynamics, 2nd edn. Prentice Hall, Englewood Cliffs, NJ (1988)

    Google Scholar 

  22. Grizzle, J.W., Abba, G., Plestan, F.: Asymptotically stable walking for biped robots: analysis via systems with impulse effects. IEEE Trans. Automat. Contr. 46(1), 51–64 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hobbelen, D.G.E., Wisse, M.: Controlling the walking speed in limit cycle walking. Int. J. Robot. Res. 27(9), 989–1005 (2008)

    Article  Google Scholar 

  24. Hurmuzlu, Y., Chang, T.H.: Rigid body collisions of a special class of planar kinematic chains. IEEE Trans. Syst. Man Cybern. 22(5), 964–971 (1992)

  25. Hurmuzlu, Y., Marghitu, D.B.: Rigid body collisions of planar kinematic chains with multiple contact points. Int. J. Robot. Res. 13(1), 82–92 (1994)

    Article  Google Scholar 

  26. Hurmuzlu, Y., Moskowitz, G.: The role of impact in the stability of bipedal locomotion. Dynam. Stabil. Syst. 1(3), 217–234 (1986)

    Article  MATH  Google Scholar 

  27. Kuo, A.D.: Stabilization of lateral motion in passive dynamic walking. Int. J. Robot. Res. 18(9), 917–930 (1999)

    Article  Google Scholar 

  28. Margaria, R.: Positive and negative work performances and their efficiencies in human locomotion. Int. Z. angew. Physiol. Einschl. Arbeitsphysiol. 25(4), 339–351 (1968)

    Google Scholar 

  29. Margaria, R.: Biomechanics and Energetics of Muscular Exercise. Clarendon Press, Oxford, U.K. (1976)

    Google Scholar 

  30. McGeer, T.: Passive dynamic walking. Int. J. Robot. Res. 9(2), 62–82 (1990)

    Article  Google Scholar 

  31. McGeer, T.: Dynamics and control of bipedal locomotion. J. Theor. Biol. 163(3), 277–314 (1993)

    Article  Google Scholar 

  32. Mochon, S., McMahon, T.A.: Ballistic walking. J. Biomech. 13(1), 49–57 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  33. Mochon, S., McMahon, T.A.: Ballistic walking: an improved model. Math. Biosci. 52(3–4), 241–260 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  34. Moon, J.S., Lee, S.M., Bae, J., Youm, Y.: Analysis of period-1 passive limit cycles for flexible walking of a biped with knees and point feet. Robotica (2015). doi:10.1017/S0263574715000144

  35. Moon, J.S., Spong, M.W.: Classification of periodic and chaotic passive limit cycles for a compass-gait biped with gait asymmetries. Robotica 29(7), 967–974 (2011)

    Article  Google Scholar 

  36. Moon, J.S., Stipanović, D.M., Spong, M.W.: Gait generation and stabilization for nearly passive dynamic walking using auto-distributed impulses. Asian J. Control (2015). doi:10.1002/asjc.1206

  37. Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. Springer, New York, NY (1989)

    Book  MATH  Google Scholar 

  38. Pratt, J.E.: Exploiting inherent robustness and natural dynamics in the control of bipedal walking robots. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA (2000)

  39. Roussel, L., Canudas-de-Wit, C., Goswami, A.: Generation of energy optimal complete gait cycles for biped robots. In: Proceedings of IEEE International Conference on Robotics Automation, pp. 2036–2041. Leuven, Belgium (1998)

  40. Schiehlen, W.: Energy-optimal design of walking machines. Multibody Syst. Dyn. 13(1), 129–141 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  41. Spong, M.W., Holm, J.K., Lee, D.: Passivity-based control of bipedal locomotion. IEEE Robot. Autom. Mag. 14(2), 30–40 (2007)

    Article  Google Scholar 

  42. Spong, M.W., Hutchinson, S., Vidyasagar, M.: Robot Modeling and Control. Wiley, Hoboken, NJ (2006)

    Google Scholar 

  43. Sreenath, K., Park, H.W., Poulakakis, I., Grizzle, J.W.: A compliant hybrid zero dynamics controller for stable, efficient and fast bipedal walking on MABEL. Int. J. Robot. Res. 30(9), 1170–1193 (2011)

    Article  Google Scholar 

  44. Srinivasan, M., Ruina, A.: Computer optimization of a minimal biped model discovers walking and running. Nature 439, 72–75 (2006)

    Article  Google Scholar 

  45. Strogatz, S.H.: Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. Addison-Wesley, Reading, Mass (1994)

    Google Scholar 

  46. Tedrake, R., Zhang, T.W., Fong, M.f., Seung, H.S.: Actuating a simple 3D passive dynamic walker. In: Proceedings of IEEE International Conference on Robotics Automation, pp. 4656–4661. New Orleans, LA (2004)

  47. Vukobratović, M., Borovac, B.: Zero-moment point—thirty five years of its life. Int. J. Humanoid Robotics 1, 157–173 (2004)

    Article  Google Scholar 

  48. Vukobratović, M., Juričić, D.: Contribution to the synthesis of biped gait. In: Proceedings of IFAC Symposium on Technical and Biological Problem on Control. Erevan, USSR (1968)

  49. Westervelt, E.R., Grizzle, J.W., Koditschek, D.E.: Hybrid zero dynamics of planar biped walkers. IEEE Trans. Automat. Contr. 48(1), 42–56 (2003)

  50. Wisse, M., Schwab, A.L., van der Linde, R.Q.: A 3D passive dynamic biped with yaw and roll compensation. Robotica 19(3), 275–284 (2001)

    Article  Google Scholar 

  51. Wittenburg, J.: Dynamics of System of Rigid Bodies. Teubner, Stuttgart (1977)

    Book  MATH  Google Scholar 

  52. Yamakita, M., Asano, F.: Extended passive velocity field control with variable velocity fields for a kneed biped. Adv. Robot. 15(2), 139–168 (2001)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the 2010 Research Fund (1.100036.01) of UNIST (Ulsan National Institute of Science and Technology), the 2012 Creativity and Innovation Research Fund (1.120047.01) of UNIST, and the 2015 Research Fund (1.150033.01) of UNIST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joonbum Bae.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 206 KB)

Supplementary material 2 (mp4 208 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moon, JS., Bae, J. Gait optimization and energetics of ballistic walking for an underactuated biped with knees. Nonlinear Dyn 85, 1533–1546 (2016). https://doi.org/10.1007/s11071-016-2777-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2777-2

Keywords

Navigation