Skip to main content
Log in

A new approach to the vakonomic mechanics

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The aim of this paper was to show that the Lagrange–d’Alembert and its equivalent the Gauss and Appel principle are not the only way to deduce the equations of motion of the nonholonomic systems. Instead of them we consider the generalization of the Hamiltonian principle for nonholonomic systems with non-zero transpositional relations. We apply this variational principle, which takes into the account transpositional relations different from the classical ones, and we deduce the equations of motion for the nonholonomic systems with constraints that in general are nonlinear in the velocity. These equations of motion coincide, except perhaps in a zero Lebesgue measure set, with the classical differential equations deduced with the d’Alembert–Lagrange principle. We provide a new point of view on the transpositional relations for the constrained mechanical systems: the virtual variations can produce zero or non-zero transpositional relations. In particular, the independent virtual variations can produce non-zero transpositional relations. For the unconstrained mechanical systems, the virtual variations always produce zero transpositional relations. We conjecture that the existence of the nonlinear constraints in the velocity must be sought outside of the Newtonian mechanics. We illustrate our results with examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alekseev, V.M., Tikhomirov, V.M., Fomin, S.V.: Optimal Control. Contemporary Soviet Mathematics. Consultants Bureau, New York (1987). ISBN:0-306-10996-4

    Google Scholar 

  2. Arnold, V.I., Kozlov, V.V., Neishtadt, A.I.: Mathematical aspects of classical mechanics. Dynamical Systems III, Third Edition, Encyclopaedia of Mathematical Sciences 3. Springer-Verlag, Berlin (2006). ISBN 978-3-540-28246-4

    Google Scholar 

  3. Appell, P.: Exemple de mouvement d’un point assujetti à une liaison exprimé par une relation non linéaire entre les composantes de la vitesse. Rend. Circ. Mat. Palermo 32, 48–50 (1911)

    Article  MATH  Google Scholar 

  4. Birkhoff, G.D.: Dynamical Systems, with an Addendum by Jurgen Moser. American Mathematical Society Colloquium Publications. American Mathematical Society, Providence (1966)

    Google Scholar 

  5. Bloch, A.M.: Nonholonomic mechanics and control, with the collaboration of J. Baillieul, P. Crouch and J. Marsden, with scientific input from P. S. Krishnaprasad, R. M. Murray and D. Zenkov. Interdisciplinary Applied Mathematics 24, Systems and Control. Springer-Verlag, New York (2003). ISBN: 0-387-95535-6

    Google Scholar 

  6. Cantrijn, F., Cortés, J., de León, M., de Diego, D.M.: On the geometry of generalized Chaplygin systems. Math. Proc. Cambr. Philos. Soc. 132, 323–351 (2002)

    Article  MATH  Google Scholar 

  7. Chaplygin, S.A.: On the theory of motion of nonholonomic systems. Theorems on the reducing multiplier. Mat. Sb. 28, 303–314 (1911). (in Russian)

    Google Scholar 

  8. Chetaev, N.G.: Izv. Fiz. Mat. Obshch. Kazan 6, 68–71 (1932). (in Russian)

    Google Scholar 

  9. Chetaev, N.G.: On Gauss principle Izv. Fiz. Mat. Obshch. Kazan 6, 323–326 (1941). (in Russian)

    Google Scholar 

  10. Favretti, M.: Equivalence of dynamics for nonholonomic systems with transverse constraints. J. Dynam. Differ. Equ. 10, 511–536 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ferrers, N.M.: Extension of Lagrange’s equations, Quart. J. Pure Appl. Math. 12, 1–5 (1872)

    MATH  Google Scholar 

  12. Gantmacher, F.R.: Lektsi po analitisheskoi mechanic, Ed. Nauka, Moscow, 1966 (in Russian)

  13. Gelfand, I.M., Fomin, S.V.: Calculus of Variations. Prentice-Hall Inc, Englewood Cliffs (1963)

    Google Scholar 

  14. Gracia, X., Marín-Solano, J., Muñoz-Lecanda, M.: Some geometric aspects of variational calculus in constrained systems. Rep. Math. Phys. 51, 127–148 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Griffiths, P.A.: Exterior differential systems and the calculus of variations. Progress in Mathematics 25, Birkhäuser. Springer, Boston (1983). ISBN 0-7643-3103-8

    Google Scholar 

  16. Hamel, G.: Teoretische Mechanik, Eine einheitliche Einführung in die gesamte Mechanik. Springer-Verlag, Berlin-New York (1978). Corrected reprint of the 1949 edition, ISBN: 3-540-03816-7

    Google Scholar 

  17. Hertz, H.: Die Prinzipien der Mechanik in neuem Zusammenhaange dargestellt. Ges, Werke, Leipzig, Barth (1910)

  18. Hölder, O.: Ueber die prinzipien von Hamilton und Maupertius, Nachtichten Kön. Ges. Wissenschaften zu Gottingen Math.-Phys. Kl. (1896), 122–157.

  19. Kharlamov, P.V.: A critique of some mathematical models of mechanical systems with differential constraints. J. Appl. Math. Mech. 56, 584–594 (1992)

    Article  MathSciNet  Google Scholar 

  20. Kirgetov, V.I.: On the ranspositional relations in mechanics. J. Appl. Math. Mech. 22, 682–693 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  21. Korteweg, D.J.: Über eine ziemlich verbreitete unrichtige Behand-lungsweise eines. Probl. der Rollenden Beweg., Nieuw Archiv. voor Wiskd. 4, 130–155 (1899)

    Google Scholar 

  22. Kozlov, V.V.: The dynamics of systems with non-integrable restrictions I. Vestn. Mosk. Univ. Ser. I Mat. Mekh. 3, 92–100 (1982)

    Google Scholar 

  23. Kozlov, V.V.: The dynamics of systems with non-integrable restrictions II. Vestn. Mosk. Univ. Ser. I Mat. Mekh. 4, 70–76 (1982)

    Google Scholar 

  24. Kozlov, V.V.: Dynamics of systems with non-integrable restrictions III. Vestn. Mosk. Univ., Ser. 3 Mat. Mekh. 3, 102–111 (1983)

    Google Scholar 

  25. Kozlov, V.V.: Realization of nonintegrable constraints in classical mechanics. Dokl. Akad. Nauk SSSR 272, 550–554 (1983)

    MathSciNet  Google Scholar 

  26. Kozlov, V.V.: On the theory of integration of the equations of nonholonomic mechanics. Adv. Mech. 8, 85–107 (1985)

  27. Kozlov, V.V.: Gauss principle and realization of the constraints. Regular Chaotic Dyn. 13, 431–434 (2008)

    Article  MATH  Google Scholar 

  28. Kupka, I., Oliva, W.M.: The nonholonomic mechanics. J. Differ. Equ. 169, 169–189 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lewis, A.D., Murray, R.M.: Variational principle for constrained mechanical systems: theory and experiments. Int. J. Non-linear Mech. 30, 793–815 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  30. Llibre, J., Ramírez, R., Sadovskaia, N.: Integrability of the constrained rigid body. Nonlinear Dyn. 73, 2273–2290 (2013)

    Article  MATH  Google Scholar 

  31. Llibre, J., Ramírez, R., Sadovskaia, N.: Inverse problems in ordinary differential equations, preprint, (2012)

  32. Lurie, A.I.: Analytical Dynamics. Foundations of Engineering Mechanics. Springer-Verlag, Berlin (2002). ISBN 3-540-42982-4

    Google Scholar 

  33. Marle, C.M.: Various approaches to conservative and nonconservative nonholonomic systems. Rep. Math. Phys. 42, 211–229 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  34. Maruskin, J.M., Bloch, A.M., Marsden, J.E., Zenkov, D.V.: A fiber bundle approach to the transpositional relations in nonholonomic mechanics. J. Nonlinear Sci. 22, 431–461 (2012). doi:10.1007/s00332-012-9144-3

    Article  MathSciNet  MATH  Google Scholar 

  35. Neimark, J., Fufaev, N.A.: Dynamics of Nonholonomic Systems. American Mathematical Society, Rhode Island (1972). ISBN 082183617X / 0-8218-3617-X

    MATH  Google Scholar 

  36. Novoselov, V.S.: Example of a nonlinear nonholonomic constraints that is not of the type of N.G. Chetaev, Vestnik Leningrad Univ., 12 (1957)

  37. Oliva, W.M.: Geometric Mechanics, Lecture Notes in Mathematics, vol. 1798. Springer-Verlag, Berlin (2002)

    Google Scholar 

  38. Pars, L.A.: A Treatise on Analytical Dynamics. John Wiley & Sons Inc, New York (1965)

    MATH  Google Scholar 

  39. Poincaré, H.: Hertz’s ideas in mechanics, in addition to H. Hertz, Die Prizipien der Mechanik in neum Zusammemhauge dargestellt (1894)

  40. Polak, L.S.: Variation principle of mechanic, Ed. Fisico-matematicheskoi literature, 1960 (in Russian)

  41. Ramirez, R., Sadovskaia, N.: On the dynamics of nonholonomic systems. Rep. Math. Phys. 60, 427–451 (2007). doi:10.1016/S0034-4877(08)00005-0

    Article  MathSciNet  MATH  Google Scholar 

  42. Ramirez, R.: Dynamics of nonholonomic systems, Publisher VINITI 3878 (1985) (in Russian)

  43. Rubanovskii, V.N., Samsonov, V.A.: Stability of steady motions, in examples and problems, M. Nauka 1998 (in Russian)

  44. Rumyantsev, V.V.: On the forms of the Hamilton principle in quasicoordinates. J. Appl. Math. Mech. 63, 165–171 (1999). doi:10.1016/S0021-8928(99)00024-6

  45. Sadovskaia, N.: Inverse problem in theory of ordinary differential equations, Thesis Ph. D., Univ. Politécnica de Cataluña, 2002 (in Spanish)

  46. Synge, J.L.: On the geometry of dynamics, Phil. Trans. Roy. Soc. Lond. Ser. A 226, 31–106 (1927)

    Article  Google Scholar 

  47. Sumbatov, A.S.: Nonholonomic systems. Regular Chaotic Dyn. 7, 221–238 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  48. Suslov, G.K.: On a particular variant of d’Alembert principle. Math. Sb. 22, 687–691 (1901). (in Russian)

  49. Zampieri, G.: Nonholonomic versus vakonomic dynamics. J. Differential Equations 163, 335–347 (2000). doi:10.1006/jdeq.1999.3727

    Article  MathSciNet  MATH  Google Scholar 

  50. Vershik, A.M., Faddev, L.D.: Differential geometry and Lagrangian mechanics with constraints, Soviet Physics-Doklady 17, (1972) (in Russian)

  51. Vierkandt, A.: Über gleitende und rollende. Beweg. Monatshefte Mathh. Phys. III, 31–54 (1982)

    Google Scholar 

  52. Volterra, V.: Sopra una classe di equazione dinamiche. Atti Accad. Sci. Torino 33, 451–475 (1898)

    MATH  Google Scholar 

  53. Voronets, P.: On the equations of motion for nonholonomic systems. Math. Sb. 22, 659–686 (1901). (in Russian)

    Google Scholar 

Download references

Acknowledgments

The first author is partially supported by a MINECO/FEDER Grant MTM2008–03437, an AGAUR Grant number 2014SGR-568, an ICREA Academia, FP7–PEOPLE–2012–IRSES–316338 and 318999, and FEDER-UNAB10-4E-378. The second author was partly supported by the Spanish Ministry of Education through projects TSI2007-65406-C03-01 “E-AEGIS” and Consolider CSD2007-00004 “ARES”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaume Llibre.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Llibre, J., Ramírez, R. & Sadovskaia, N. A new approach to the vakonomic mechanics. Nonlinear Dyn 78, 2219–2247 (2014). https://doi.org/10.1007/s11071-014-1554-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1554-3

Keywords

Navigation