Skip to main content
Log in

Adaptive fuzzy formation control for a swarm of nonholonomic differentially driven vehicles

An H -based robust control design

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, an adaptive fuzzy robust H controller is proposed for formation control of a swarm of differential driven vehicles with nonholonomic dynamic models. Artificial potential functions are used to design the formation control input for kinematic model of the robots and matrix manipulations are used to transform the nonholonomic model of each differentially driven vehicle into equivalent holonomic one. The main advantage of the proposed controller is the robustness to input nonlinearity, external disturbances, model uncertainties, and measurement noises, in a formation control of a nonholonomic robotic swarm. Moreover, robust stability proof is given using Lyapunov functions. Finally, simulation results are demonstrated for a swarm formation problem of a group of six unicycles, illustrating the effective attenuation of approximation error and external disturbances, even in the case of robot failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schurr, N., Marecki, J., Tambe, M., Scerri, P.: The future of disaster response: Humans working with multiagent teams using de facto. In: AAAI Spring Symposium on AI Technologies for Homeland Security (2005)

    Google Scholar 

  2. Sun, R., Naveh, I.: Simulating organizational decision-making using a cognitively realistic agent model. J. Artif. Soc. Soc. Simul. 7(3) (2004)

  3. Kim, S.H., Park, C., Harashima, F.: A self-organized fuzzy controller for wheeled mobile robot using an evolutionary algorithm. IEEE Trans. Ind. Electron. 48(2), 467–474 (2001)

    Article  Google Scholar 

  4. Chung, Y., Park, C., Harashima, F.: A position control differential drive wheeled mobile robot. IEEE Trans. Ind. Electron. 48(4), 853–863 (2001)

    Article  Google Scholar 

  5. Lee, J.M., Son, K., Lee, M., Choi, J., Han, S., Lee, M.H.: Localization of a mobile robot using the image of a moving object. IEEE Trans. Ind. Electron. 50(3), 612–619 (2003)

    Article  Google Scholar 

  6. Er, M.J., Deng, C.: Obstacle avoidance of a mobile robot using hybrid learning approach. IEEE Trans. Ind. Electron. 52(3), 898–905 (2005)

    Article  Google Scholar 

  7. Lee, D., Chung, W.: Discrete-status-based localization for indoor service robots. IEEE Trans. Ind. Electron. 53(5), 1737–1746 (2006)

    Article  Google Scholar 

  8. Reif, J., Wang, H.: Social potential fields: A distributed behavioral control for autonomous robots. Robot. Auton. Syst. 27(3), 171–194 (1999)

    Article  Google Scholar 

  9. Kato, S., Tsugawa, S., Tokuda, K., Matsui, T., Fujii, H.: Vehicle control algorithms for cooperative driving with automated vehicles and intervehicle communications. IEEE Trans. Intell. Transp. Syst. 3(3), 155–161 (2002)

    Article  Google Scholar 

  10. White, B., Tsourdos, A., Ashokaraj, I., Subchan, S., Zbikowski, R.: Contaminant cloud boundary monitoring using network of UAV sensors. IEEE Sens. J. 8(10), 1681–1692 (2008)

    Article  Google Scholar 

  11. Badawy, A., McInnes, C.R.: Small spacecraft formation using potential functions. Acta Astronaut. 65(11–12), 1783–1788 (2009)

    Article  Google Scholar 

  12. Barnes, L., Fields, M., Valavanis, K.: Swarm formation control utilizing elliptical surfaces and limiting functions. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 39(6), 1434–1445 (2009)

    Article  Google Scholar 

  13. Doyle, J., Glover, K., Khargonekar, P., Francis, B.: State-space solutions to standard h 2 and h control problems. IEEE Trans. Autom. Control 34(1), 831–874 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen, B.S., Lee, T., Feng, J.: A nonlinear h control design in robotic systems under parameter perturbation and external disturbance. Int. J. Control 59(2), 439–461 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  15. Willmann, G., Coutinho, D., Pereira, L., Libano, F.: Multiple-loop h-infinity control design for uninterruptible power supplies. IEEE Trans. Ind. Electron. 54(3), 1591–1602 (2007)

    Article  Google Scholar 

  16. Kwan, K.H., Chu, Y.C., So, P.L.: Model-based H control of a unified power quality conditioner. IEEE Trans. Ind. Electron. 56(7), 2493–2504 (2009)

    Article  Google Scholar 

  17. Wang, R., Liu, G., Wang, W., Rees, D., Zhao, Y.: H  control for networked predictive control systems based on switched Lyapunov function method. IEEE Trans. Ind. Electron. PP(99), 1 (2009)

    Google Scholar 

  18. Loukianov, A., Rivera, J., Orlov, Y., Morales Teraoka, E.: Robust trajectory tracking for an electrohydraulic actuator. IEEE Trans. Ind. Electron. 56(9), 3523–3531 (2009)

    Article  Google Scholar 

  19. Chen, B.-S., Lee, C.-H., Chang, Y.-C.: h tracking design of uncertain nonlinear siso systems: adaptive fuzzy approach. IEEE Trans. Fuzzy Syst. 4(1), 32–43 (1996)

    Article  Google Scholar 

  20. Balas, V.E., Jain, L.C.: World knowledge for sensors and estimators by models and internal models. J. Intell. Fuzzy Syst. 21(1–2), 79–88 (2010). doi:10.3233/IFS-2010-0437

    MATH  Google Scholar 

  21. Balas, M.M., Balas, V.E.: World knowledge for control application by fuzzy-interpolative systems. Int. J. Comput. Commun. Control III, 28–32 (2008). Suppl. issue: Proceedings of ICCCC 2008

    Google Scholar 

  22. Fukao, T., Nakagawa, H., Adachi, N.: Adaptive tracking control of a nonholonomic mobile robot. IEEE Trans. Robot. Autom. 16(5), 609–615 (2000)

    Article  Google Scholar 

  23. Hou, Z.-G., Zou, A.-M., Cheng, L., Tan, M.: Adaptive control of an electrically driven nonholonomic mobile robot via backstepping and fuzzy approach. IEEE Trans. Control Syst. Technol. 17(4), 803–815 (2009)

    Article  Google Scholar 

  24. Park, B.S., Yoo, S.J., Park, J.B., Choi, Y.H.: A simple adaptive control approach for trajectory tracking of electrically driven nonholonomic mobile robots. IEEE Trans. Control Syst. Technol. 18(5), 1199–1206 (2010)

    Article  Google Scholar 

  25. Gazi, V.: Swarm aggregations using artificial potentials and sliding-mode control. IEEE Trans. Robot. 21(6), 1208–1214 (2005)

    Article  Google Scholar 

  26. Lin, Z., Francis, B., Maggiore, M.: Necessary and sufficient graphical conditions for formation control of unicycles. IEEE Trans. Autom. Control 50(1), 121–127 (2005)

    Article  MathSciNet  Google Scholar 

  27. Cheaha, C., Houa, S., Slotine, J.: Region-based shape control for a swarm of robots. Automatica 45(10), 2406–2411 (2009)

    Article  Google Scholar 

  28. Khalil, H.: Nonlinear Systems, 2nd edn. Prentice-Hall, Englewood Cliffs (1996)

    Google Scholar 

  29. Pomet, J.B., Thuilot, B., Bastin, G., Campion, G.: A hybrid strategy for the feedback stabilization of nonholonomic mobile robots. In: IEEE International Conference on Robotics and Automation, pp. 129–134 (2002)

    Google Scholar 

  30. Slotine, E., Li, W.: Applied Nonlinear Control. Prentice-Hall, Englewood Cliffs (1991)

    MATH  Google Scholar 

  31. Ranjbarsahraei, B., Shabaninia, F.: A robust h control design for swarm formation control of multi-agent systems: A decentralized adaptive fuzzy approach. In: 3rd International Symposium on Resilient Control Systems (ISRCS10), Idaho Falls, ID, pp. 79–84 (2010)

    Google Scholar 

  32. Wang, L.: A Course in Fuzzy Systems and Control. Prentice-Hall, Englewood Cliffs (1997)

    MATH  Google Scholar 

  33. Cortes, J., Martinez, S., Karatas, T., Bullo, F.: Coverage control for mobile sensing networks. IEEE Trans. Robot. Autom. 20(2), 243–255 (2004)

    Article  Google Scholar 

  34. Ranjbarsahraei, B., Nemati, A., Farshchi, M., Meghdari, A.: Adaptive fuzzy sliding mode control approach for swarm formation control of multi-agent systems. In: ASME Conf. Proc., vol. 2010(49194), pp. 485–490 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Roopaei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ranjbarsahraei, B., Roopaei, M. & Khosravi, S. Adaptive fuzzy formation control for a swarm of nonholonomic differentially driven vehicles. Nonlinear Dyn 67, 2747–2757 (2012). https://doi.org/10.1007/s11071-011-0186-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-0186-0

Keywords

Navigation