Skip to main content
Log in

Four-wing hyperchaotic attractor generated from a new 4D system with one equilibrium and its fractional-order form

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a new simple 4D smooth autonomous system is proposed, which illustrates two interesting rare phenomena: first, this system can generate a four-wing hyperchaotic and a four-wing chaotic attractor and second, this generation occurs under condition that the system has only one equilibrium point at the origin. The dynamic analysis approach in the paper involves time series, phase portraits, Lyapunov exponents, bifurcation diagram, and Poincaré maps, to investigate some basic dynamical behaviors of the proposed 4D system. The physical existence of the four-wing hyperchaotic attractor is verified by an electronic circuit. Finally, it is shown that the fractional-order form of the system can also generate a chaotic four-wing attractor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)

    Article  Google Scholar 

  2. Chakravorty, J., Banerjee, T., Ghatak, R., Bose, A., Sarkar, B.C.: Generating chaos in injection-synchronized Gunn oscillator: an experimental approach. IETE J. Res. 55, 106–111 (2009)

    Article  Google Scholar 

  3. Nana, B., Woafo, P., Domngang, S.: Chaotic synchronization with experimental application to secure communication. Commun. Nonlinear Sci. Numer. Simul. 14, 629–655 (2009)

    Google Scholar 

  4. Coulon, M., Roviras, D.: Multi-user receivers for synchronous and asynchronous transmission for chaos-based multiple-access systems. Signal Process. 89, 583–598 (2009)

    Article  MATH  Google Scholar 

  5. Kozic, S., Hasler, M.: Low-density codes based on chaotic systems for simple encoding. IEEE Trans. Circuits Syst. I 56, 405–415 (2009)

    Article  Google Scholar 

  6. Chen, G., Ueta, T.: Yet another chaotic attractor. Int. J. Bifurc. Chaos 9, 1465–1466 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Lü, J., Chen, G.: A new chaotic attractor coined. Int. J. Bifurc. Chaos 12, 659–661 (2002)

    Article  MATH  Google Scholar 

  8. Qi, G., Chen, G., Du, S., Chen, Z., Yuan, Z.: Analysis of a new chaotic system. Physica A 352, 295–308 (2005)

    Article  Google Scholar 

  9. Wang, G.Y., Qui, S.S., Li, H.W., Li, C.F., Zheng, Y.: A new chaotic system and its circuit realization. Chin. Phys. 15, 2872–2877 (2006)

    Article  Google Scholar 

  10. Liu, C., Liu, L.: A new three-dimensional autonomous chaotic oscillation system. J. Phys. Conf. Ser. 96, 012173 (2008)

    Article  Google Scholar 

  11. Chen, Z., Yang, Y., Yuan, Z.: A single three-wing or four-wing chaotic attractor generated from a three-dimensional smooth quadratic autonomous system. Chaos Solitons Fractals 38, 1187–1196 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Wang, L.: 3-scroll and 4-scroll chaotic attractors generated from a new 3-D quadratic autonomous system. Nonlinear Dyn. 56, 453–462 (2009)

    Article  MATH  Google Scholar 

  13. Dadras, S., Momeni, H.R.: A novel three-dimensional autonomous chaotic system generating two-, three- and four-scroll attractors. Phys. Lett. A 373, 3637–3642 (2009)

    Article  MathSciNet  Google Scholar 

  14. Baghious, E., Jarry, P.: Lorenz attractor: From differential equations with piecewise-linear terms. Int. J. Bifurc. Chaos 3, 201–210 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  15. Elwakil, A., Ozoguz, S., Kennedy, M.: Creation of a complex butterfly attractor using a novel Lorenz-type system. IEEE Trans. Circuits Syst. I 49, 527–530 (2002)

    Article  MathSciNet  Google Scholar 

  16. Ozoguz, S., Elwakil, A., Kennedy, M.: Experimental verification of the butterfly attractor in a modified Lorenz system. Int. J. Bifurc. Chaos 12, 1627–1632 (2002)

    Article  Google Scholar 

  17. Qi, G., Chen, G., Li, S., Zhang, Y.: Four-wing attractors: From pseudo to real. Int. J. Bifurc. Chaos 16, 859–885 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Grassi, G., Severance, F.L., Mashev, E.D., Bazuin, B.J., Miller, D.A.: Generation of a four-wing chaotic attractor by two weakly-coupled Lorenz systems. Int. J. Bifurc. Chaos 18, 2089–2094 (2008)

    Article  MATH  Google Scholar 

  19. Grassi, G.: Novel four-wing and eight-wing attractors using coupled chaotic Lorenz systems. Chin. Phys. B 17, 3247–3251 (2008)

    Article  Google Scholar 

  20. Dadras, S., Momeni, H.R., Qi, G.: Analysis of a new 3D smooth autonomous system with different wing chaotic attractors and transient chaos. Nonlinear Dyn. 62, 391–405 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  21. Wang, L.: Yet another 3D quadratic autonomous system generating three-wing and four-wing chaotic attractors. Chaos 19, 013107 (2009)

    Article  MathSciNet  Google Scholar 

  22. Dadras, S., Momeni, H.R.: Generating one-, two-, three- and four-scroll attractors from a novel four-dimensional smooth autonomous chaotic system. Chin. Phys. B 19, 060506 (2010)

    Article  Google Scholar 

  23. Rössler, O.E.: An equation for hyperchaos. Phys. Lett. A 71, 155–157 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  24. Thamilmaran, K., Lakshmanan, M., Venkatesan, A.: Hyperchaos in a modified canonical Chua’s circuit. Int. J. Bifurc. Chaos 14, 221–243 (2004)

    Article  MATH  Google Scholar 

  25. Li, Y., Tang, S.K., Chen, G.: Generating hyperchaos via state feedback control. Int. J. Bifurc. Chaos 15, 3367–3375 (2005)

    Article  Google Scholar 

  26. Li, Y., Tang, W.K.S., Chen, G.: Hyperchaos evolved from the generalized Lorenz equation. Int. J. Circuit Theory Appl. 33, 235–251 (2005)

    Article  MATH  Google Scholar 

  27. Wang, J.Z., Chen, Z.Q., Yuan, Z.Z.: The generation of a hyperchaotic system based on a three-dimensional autonomous chaotic system. Chin. Phys. 15, 1216–1225 (2006)

    Article  Google Scholar 

  28. Jia, Q.: Generation and suppression of a new hyperchaotic system with double hyperchaotic attractors. Phys. Lett. A 371, 410–415 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  29. Jia, Q.: Hyperchaos generated from the Lorenz chaotic system and its control. Phys. Lett. A 366, 217–222 (2007)

    Article  MATH  Google Scholar 

  30. Qi, G., Wyk, M.A., Wyk, B.J., Chen, G.: On a new hyperchaotic system. Phys. Lett. A 372, 124–136 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  31. Liu, L., Liu, C., Zhang, Y.: Analysis of a novel four-dimensional hyperchaotic system. Chin. J. Phys. 46, 386–393 (2008)

    Google Scholar 

  32. Wu, W.J., Chan, Z.Q., Yuan, Z.Z.: Local bifurcation analysis of a four-dimensional hyperchaotic system. Chin. Phys. B 17, 2420–2432 (2008)

    Article  Google Scholar 

  33. Mahmoud, G.M., Al-Kashif, M.A., Farghaly, A.A.: Chaotic and hyperchaotic attractors of a complex nonlinear system. J. Phys. A, Math. Theor. 41, 055104 (2008)

    Article  MathSciNet  Google Scholar 

  34. Yujun, N., Xingyuan, W., Mingjun, W., Huaguang, Z.: A new hyperchaotic system and its circuit implementation. Commun. Nonlinear Sci. Numer. Simul. 15, 3518–3524 (2010)

    Article  Google Scholar 

  35. Zheng, S., Dong, G., Bi, Q.: A new hyperchaotic system and its synchronization. Appl. Math. Comput. 215, 3192–3200 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  36. Mahmoud, G.M., Mahmoud, E.E., Ahmed, M.E.: On the hyperchaotic complex Lü system. Nonlinear Dyn. 58, 725–738 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  37. Qi, G., Wyk, M.A., Wyk, B.J., Chen, G.: A new hyperchaotic system and its circuit implementation. Chaos Solitons Fractals 40, 2544–2549 (2009)

    Article  Google Scholar 

  38. Yang, Q., Zhang, K., Chen, G.: Hyperchaotic attractors from a linearly controlled Lorenz system. Nonlinear Anal., Real World Appl. 10, 1601–1617 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  39. Chen, C.H., Sheu, L.J., Chen, H.K., Chen, J.H., Wang, H.C., Chao, Y.C., Lin, Y.K.: A new hyper-chaotic system and its synchronization. Nonlinear Anal., Real World Appl. 10, 2088–2096 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  40. Chen, Z., Yang, Y., Qi, G., Yuan, Z.: A novel hyperchaos system only with one equilibrium. Phys. Lett. A 360, 696–701 (2007)

    Article  MathSciNet  Google Scholar 

  41. Liu, C.: A new hyperchaotic dynamical system. Chin. Phys. 16, 3279–3284 (2007)

    Article  Google Scholar 

  42. Cang, S., Qi, G., Chen, Z.: A four-wing hyper-chaotic attractor and transient chaos generated from a new 4-D quadratic autonomous system. Nonlinear Dyn. 59, 515–527 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  43. Grassi, G., Severance, F.L., Miller, D.A.: Multi-wing hyperchaotic attractors from coupled Lorenz systems. Chaos Solitons Fractals 41, 284–291 (2009)

    Article  MATH  Google Scholar 

  44. Makris, N., Constantinou, M.C.: Fractional derivative Maxwell model for viscous dampers. J. Struct. Eng. 117, 2708–2724 (1991)

    Article  Google Scholar 

  45. Scalas, E., Gorenflo, R., Mainardi, F.: Fractional calculus and continuous-time finance. Physica A 284, 376–384 (2000)

    Article  MathSciNet  Google Scholar 

  46. Cafagna, D.: Fractional calculus: a mathematical tool from the past for present engineers. IEEE Ind. Electron. Mag. (summer), 35–40 (2007)

  47. Tavazoei, M.S., Haeri, M., Bolouki, S., Siami, M.: Using fractional-order integrator to control chaos in single-input chaotic system. Nonlinear Dyn. 55, 179–190 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  48. Cafagna, D., Grassi, G.: Bifurcation and chaos in the fractional-order Chen system via a time-domain approach. Int. J. Bifurc. Chaos 18, 1845–1863 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  49. Cafagna, D., Grassi, G.: Fractional-order Chua’s circuit: time domain analysis, bifurcation, chaotic behavior and test for chaos. Int. J. Bifurc. Chaos 18, 615–639 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  50. Daftardar-Gejji, V., Bhalekar, S.: Chaos in fractional ordered Liu system. Comput. Math. Appl. 59, 1117–1127 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  51. Cafagna, D., Grassi, G.: Fractional-order chaos: a novel four-wing attractor in coupled Lorenz systems. Int. J. Bifurc. Chaos 19, 3329–3338 (2009)

    Article  MATH  Google Scholar 

  52. Cafagna, D., Grassi, G.: Hyperchaos in the fractional-order Rössler system with lowest order. Int. J. Bifurc. Chaos 19, 339–347 (2009)

    Article  MATH  Google Scholar 

  53. Diethelm, K.: An algorithm for the numerical solution of differential equations of fractional order. Electron. Trans. Numer. Anal. 5, 1–6 (1997)

    MATH  MathSciNet  Google Scholar 

  54. Diethelm, K., Ford, N.J., Freed, A.D.: A predictor–corrector approach for the numerical solution for fractional differential equations. Nonlinear Dyn. 29, 3–22 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  55. Diethelm, K., Ford, N.J.: Analysis of fractional differential equations. J. Math. Anal. Appl. 265, 229–248 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  56. Charef, A., Sun, H.H., Tsao, Y.Y., Onaral, B.: Fractal systems as represented by singularity function. IEEE Trans. Autom. Control 37, 1465–1470 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  57. Tavazoei, M.S., Haeri, M.: Limitation of frequency domain approximation for detecting chaos in fractional-order system. Nonlinear Anal. Theory Methods Appl. 69, 1299–1320 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Reza Momeni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dadras, S., Momeni, H.R., Qi, G. et al. Four-wing hyperchaotic attractor generated from a new 4D system with one equilibrium and its fractional-order form. Nonlinear Dyn 67, 1161–1173 (2012). https://doi.org/10.1007/s11071-011-0060-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-0060-0

Keywords

Navigation