Skip to main content

Advertisement

Log in

r.massmov: an open-source landslide model for dynamic early warning systems

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

This paper illustrates the main characteristics of the newly developed landslide model r.massmov, which is based on the shallow water equations, and is capable of simulating the landslide propagation over complex topographies. The model is the result of the reimplementation of the MassMov2D into the free and open-source GRASS GIS with a series of enhancements aiming at allowing its possible integration into innovative early warning monitoring systems and specifically into Web processing services. These improvements, finalized at significantly reducing computational times, include the introduction of a new automatic stopping criterion, fluidization process algorithm, and the parallel computing. Moreover, the results of multi-spatial resolution analysis conducted on a real case study located in the southern Switzerland are presented. In particular, this analysis, composed by a sensitivity analysis and calibration process, allowed to evaluate the model capabilities in simulating the phenomenon at different input data resolution. The results illustrate that the introduced modifications lead to important reductions in the computational time (more than 90 % faster) and that, using the lower dataset resolution capable of guaranteeing reliable results, the model can be run in about 1 s instead of the 3.5 h required by previous model with not optimized dataset resolution. Aside, the results of the research are a series of new GRASS GIS modules for conducting sensitivity analysis and for calibration. The latter integrates the automated calibration program “UCODE” with any GRASS raster module. Finally, the research workflow presented in this paper illustrates a best practice in applying r.massmov in real case applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Badoux A, Graf C, Rhyner J, Kuntner R, McArdell BW (2009) A debris-flow alarm system for the Alpine Illgraben catchment: design and performance. Natural Hazard 49(3):517–539

    Article  Google Scholar 

  • Begueria S, Van Asch ThWJ, Malet JP, Gröndhal S (2009a) A GIS-based numerical model for simulating the kinematics of mud and debris flows over complex terrain. Natural Hazards and Earth System Sciences 9:1897–1909

    Article  Google Scholar 

  • Begueria S, Van Hees MJ, Geertsema M (2009b) Comparison of three landslide runout models on the Turnoff Creek rock avalanche, British Columbia. In: Malet JP, Remaître A, Bogaard T (eds) Landslide processes: from geomorphology mapping to dynamic modelling. CERG Editions, Strasbourg, pp 243–247

    Google Scholar 

  • Bell R, Mayer J, Pohl J, Greiving S, Glade T (2010) Integrative Frühwarnsysteme für gravitative Massenbewegungen (ILEWS)—Monitoring, Modellierung, Implementierung. Klartext Verlag, Essen

    Google Scholar 

  • Brovelli MA, Cannata M, Longoni UM (2004) LIDAR data filtering and dtm interpolationwithin GRASS. Transactions in GIS 8(2):155–174

    Article  Google Scholar 

  • Cannata M 2006 A GIS embedded approach for free and open source hydrological modelling. Ph.D. dissertation, Politecnico di Milano

  • Cannata M, Marzocchi R (2012) Two-dimensional dam break flooding simulation: a GIS embedded approach. Nat Hazards 61(3):1143–1159

    Article  Google Scholar 

  • Casagli N, Catani F, Del Ventisette C, Luzi G (2010) Monitoring, prediction, and early warning using ground-based radar interferometry. Landslides 7:291–301

    Article  Google Scholar 

  • Chapman B, Jost G, Van der Pas N (2008) Using OpenMP: portable shared memory parallel programming. The MIT Press, Cambridge

    Google Scholar 

  • Christen M, Bartelt P, Gruber U (2007) RAMMS—a modeling system for snow avalanches, debris flows and rockfalls based on IDL. PFG Photogrammetrie Fernerkundung Geoinformation 4:289–292

    Google Scholar 

  • Courant R, Friedrichs K, Lewy H (1928) Über die partiellen Differenzengleichungen der mathematischen Physik. MathematischeAnnalen 100(1):32–74

  • CSIC (2013) Consejo Superior de Investigaciones Científicas. http://digital.csic.es/handle/10261/11804. Accessed 12 June 2013

  • Doherty J (2004) PEST: model-independent parameter estimation, 5th edn. Watermark Numerical Computing, Corinda

    Google Scholar 

  • Froese CR, Murray C, Cavers DS, Anderson WS, Bidwell AK, Read R, Cruden DM, Langenberg W (2005) Development of a warning system for the South Peak of Turtle Mountain. Landslide risk management. A.A. Balkema, Leiden, pp 705–712

    Google Scholar 

  • Ganerød GV, Grøneng G, Rønning JS, Dalsegg E, Elvebakk H, Tønnesen JF, Kveldsvik V, Eiken T, Blikra LH, Braathen A (2008) Geological model of the Åknes Rockslide, western Norway. Eng Geol 102(1–2):1–18

    Article  Google Scholar 

  • Goodchild MF (2005) GIS and modeling overview. In: Maguire DJ, Batty M, Goodchild MF (eds) GIS, spatial analysis, and modeling. ESRI Press, Redlands, pp 1–18 [414]

    Google Scholar 

  • He K, Zheng L, Dong S, Tang L, Wu J, Zheng C (2007) PGO: a parallel computing platform for global optimization based on genetic algorithm. Comput Geosci 33(3):357–366

    Article  Google Scholar 

  • Hofmann M (2005) On the complexity of parameter calibration in simulation models. The Journal of Defense Modeling and Simulation 2(4):217–226

    Article  Google Scholar 

  • Hungr O, Evans SG (1996) Rock avalanche runout prediction using a dynamic model. In: Senneset K (ed) Proceedings of the seventh international symposium on landslides, vol 1. AA Balkema, Rotterdam, pp 233–238

    Google Scholar 

  • Karssenberg D, Burrough PA, Sluiter R, De Jong K (2001) The PCRaster software and course materials for teaching numerical modelling in the environmental sciences. Transactions in GIS 5(2):99–110

    Article  Google Scholar 

  • Kinnmark IPE (1985) The shallow water equations: formulation, analysis and application. In: Brebia CA, Orszag SA (eds) Lecture notes in engineering 15. Springer, Berlin, pp 1–187

    Google Scholar 

  • Lacasse S and Nadim F (2008) Landslide risk assessment and mitigation strategy. Invited Lecture, State-of-the-Art. First World Landslide Forum, Global landslide risk reduction, international consortium of landslides, Tokyo. Chapter 3, pp 31–61

  • Lovisolo M, Ghirotto S, Scardia C, Battaglio M (2003) The use of differential monitoring stability (DMS) for remote monitoring of excavation and landslide movements. In: Myrvoll F (ed) Field measurements in geomechanics. Balkema, Boston

    Google Scholar 

  • Mangeney-Castelnau A, Vilotte JP, Bristeau MO, Perthame B, Bouchut F, Simeoni C, Yernini S (2003) Numerical modelling of debris avalanche based on Saint-Venant equations using a kinetic scheme. J Geophys Res 108(B11):2527

    Article  Google Scholar 

  • McDougall S, Hungr O (2004) A model for the analysis of rapid landslide motion across three-dimensional terrain. Can Geotech J 41:1084–1097

    Article  Google Scholar 

  • McDougall S, Hungr O (2005) Dynamic modelling of entrainment in rapid landslides. Can Geotech J 42:1437–1448

    Article  Google Scholar 

  • McInnes RG, Jewell S, Roberts H (1998) Coastal management in the Isle of Wight, UK. The Geographical Journal 164:291–306

    Article  Google Scholar 

  • MIARIA (2012) Monitoraggio Idrogeologico Adattativo a Supporto del Piano di Rischio Integrato Alpino. http://www.miaria.regione.lombardia.it/. Accessed 29 May 2013

  • Molinari ME, Cannata M, Begueria S, Ambrosi C (2012) Gis-based calibration of MassMov2D. Transactions in GIS 16(2):215–231

    Article  Google Scholar 

  • Neteler M, Bowman MH, Landa M, Metz M (2012) GRASS GIS: a multi-purpose open source GIS. Environmental Modelling & Software 31:124–130

    Article  Google Scholar 

  • O′Brien JS, Julien PY, Fullerton WT (1993) Two dimensional water flood and mudflow simulation. Journal of Hydraulic Engineering 119(2):244–261

    Article  Google Scholar 

  • OGC (2003) Web Notification Service. OGC 03-008r2. http://www.opengeospatial.org/projects/groups/sensorwebdwg Accesses 29 May 2013

  • OGC (2006a) OpenGIS Web Map Server implementation specification. OGC 06-042. http://www.opengeospatial.org/standards/wms. Accessed 20 May 2012

  • OGC (2006b) OGC sensor alert service candidate implementation specification. http://portal.opengeospatial.org/files/?artifact_id=15588. Accessed 29 May 2013

  • OGC (2010) OpenGIS web feature service 2.0 interface standard (also ISO 19142). http://www.opengeospatial.org/standards/wfs. Accessed 29 may 2013

  • OGC (2012) OGC Sensor observation service interface standard. OGC 12-006. http://www.opengis.net/doc/IS/SOS/2.0. Accessed 29 may 2013

  • Pirulli M (2005) Numerical modeling of landslide runout, a continuum mechanics approach. Dissertation, Politecnico di Torino

  • Poeter EP, Hill MC (1998) Documentation of UCODE: A computer code for universal inverse modeling. Water-resources investigation reports 98-4080, U.S. Geological Survey

  • Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2002) Numerical recipes in C++, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Rodgers JL, Nicewander WA (1995) Thirteen Waysto look at the correlation coefficient. Am Stat 42:59–66

    Article  Google Scholar 

  • SANY Consortium (2009) SANY - an open service architecture for sensor networks. Klopfer M and Simonis I (eds), ISBN 978-3-00-028571-4. http://www.frisia-it.de/assets/images/SANY_Book.pdf. Accessed 15 September 2013

  • Seno S, Thüring M (2005) Large landslides in Ticino, Southern Switzerland: geometry and kinematics. Eng Geol 83:109–119

    Article  Google Scholar 

  • Sofer HE, Young AW, Cave BM, Lee A, Pearson K (1917) On the distribution of the correlation coefficient in small samples. Appendix II to the papers of “Student” and R. A. Fisher. A co-operative study. Biometrika 11(4):328–413

    Google Scholar 

  • Sosio R, Crosta B, Hungr O (2008) Complete dynamic modeling calibration for the Thurwieser rock avalanche (Italian Central Alps). Eng Geol 100:11–26

    Article  Google Scholar 

  • Thiebes B (2012) Landslide analysis and early warning systems: local and regional case study in the Swabian Alb, Germany. Ed. Springer, Berlin

    Book  Google Scholar 

  • Werner C, Strozzi T, Wiesmann A, Wegmuller U (2008). A real-aperture radar for ground-based differential interferometry. In: IGARSS’08. 28th international geoscience and remote sensing symposium, 6–11 July 2008, Boston, MA, USA

Download references

Acknowledgments

The authors wish to acknowledge Dr. Santiago Begueria (Estacion Experimental de Aula Dei—Consejo Superior de Investigaciones Cientifica) for his support in the completion of this study. A special thank to Land Department of the Canton Ticino for partially funding this research, to Canton Ticino and Geofoto S.A. for Lidar data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monia Elisa Molinari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Molinari, M.E., Cannata, M. & Meisina, C. r.massmov: an open-source landslide model for dynamic early warning systems. Nat Hazards 70, 1153–1179 (2014). https://doi.org/10.1007/s11069-013-0867-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-013-0867-8

Keywords

Navigation