Skip to main content
Log in

Glutamate Receptor Stimulation Up-Regulates Glutamate Uptake in Human Müller Glia Cells

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Glutamate, the main excitatory amino acid in the vertebrate retina, is a well know activator of numerous signal transduction pathways, and has been critically involved in long-term synaptic changes acting through ionotropic and metabotropic glutamate receptors. However, recent findings underlining the importance of intensity and duration of glutamate stimuli for specific neuronal responses, including excitotoxicity, suggest a crucial role for Na+-dependent glutamate transporters, responsible for the removal of this neurotransmitter from the synaptic cleft, in the regulation of glutamate-induced signaling. Transporter proteins are expressed in neurons and glia cells, albeit most of glutamate uptake occurs in the glial compartment. Within the retina, Müller glia cells are in close proximity to glutamatergic synapses and participate in the recycling of glutamate through the glutamate/glutamine shuttle. In this context, we decided to investigate a plausible role of glutamate as a regulatory signal for its own transport in human retinal glia cells. To this end, we determined [3H]-D-aspartate uptake in cultures of spontaneously immortalized human Müller cells (MIO-M1) exposed to distinct glutamatergic ligands. A time and dose-dependent increase in the transporter activity was detected. This effect was dependent on the activation of the N-methyl D-aspartate subtype of glutamate receptors, due to a dual effect: an increase in affinity and an augmented expression of the transporter at the plasma membrane, as established via biotinylation experiments. Furthermore, a NMDA-dependent association of glutamate transporters with the cystoskeletal proteins ezrin and glial fibrillary acidic protein was also found. These results add a novel mediator of the glutamate transporter modulation and further strengthen the notion of the critical involvement of glia cells in synaptic function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hollmann M, Heinemann S (1994) Cloned glutamate receptors. Annu Rev Neurosci 17:31–108. doi:10.1146/annurev.ne.17.030194.000335

    Article  CAS  PubMed  Google Scholar 

  2. Coutinho V, Knopfel T (2002) Metabotropic glutamate receptors: electrical and chemical signaling properties. Neuroscientist 8(6):551–561

    Article  CAS  PubMed  Google Scholar 

  3. Rose EM, Koo JC, Antflick JE, Ahmed SM, Angers S, Hampson DR (2009) Glutamate transporter coupling to Na, K-ATPase. J Neurosci 29(25):8143–8155. doi:10.1523/JNEUROSCI.1081-09.2009

    Article  CAS  PubMed  Google Scholar 

  4. Rojas A, Dingledine R (2013) Ionotropic glutamate receptors: regulation by G-protein-coupled receptors. Mol Pharmacol 83(4):746–752. doi:10.1124/mol.112.083352

    Article  CAS  PubMed  Google Scholar 

  5. Danbolt NC (1994) The high affinity uptake system for excitatory amino acids in the brain. Prog Neurobiol 44(4):377–396

    Article  CAS  PubMed  Google Scholar 

  6. Kanner BI (1993) Glutamate transporters from brain. A novel neurotransmitter transporter family. FEBS Lett 325(1–2):95–99

    Article  CAS  PubMed  Google Scholar 

  7. Kanai Y, Smith CP, Hediger MA (1993) The elusive transporters with a high affinity for glutamate. Trends Neurosci 16(9):365–370

    Article  CAS  PubMed  Google Scholar 

  8. Robinson MB, Hunter-Ensor M, Sinor J (1991) Pharmacologically distinct sodium-dependent L-[3H]glutamate transport processes in rat brain. Brain Res 544(2):196–202

    Article  CAS  PubMed  Google Scholar 

  9. Gadea A, Lopez-Colome AM (2001) Glial transporters for glutamate, glycine and GABA I. Glutamate transporters. J Neurosci Res 63(6):453–460

    Article  CAS  PubMed  Google Scholar 

  10. Arriza JL, Eliasof S, Kavanaugh MP, Amara SG (1997) Excitatory amino acid transporter 5, a retinal glutamate transporter coupled to a chloride conductance. Proc Natl Acad Sci USA 94(8):4155–4160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. McLennan H (1976) The autoradiographic localization of L-[3 h]glutamate in rat brain tissue. Brain Res 115(1):139–144

    Article  CAS  PubMed  Google Scholar 

  12. Rothstein JD, Dykes-Hoberg M, Pardo CA, Bristol LA, Jin L, Kuncl RW, Kanai Y, Hediger MA, Wang Y, Schielke JP, Welty DF (1996) Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16(3):675–686

    Article  CAS  PubMed  Google Scholar 

  13. Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65(1):1–105

    Article  CAS  PubMed  Google Scholar 

  14. Broer A, Deitmer JW, Broer S (2004) Astroglial glutamine transport by system N is upregulated by glutamate. Glia 48(4):298–310. doi:10.1002/glia.20081

    Article  PubMed  Google Scholar 

  15. Daw NW, Brunken WJ, Parkinson D (1989) The function of synaptic transmitters in the retina. Annu Rev Neurosci 12:205–225. doi:10.1146/annurev.ne.12.030189.001225

    Article  CAS  PubMed  Google Scholar 

  16. Copenhagen DR, Jahr CE (1989) Release of endogenous excitatory amino acids from turtle photoreceptors. Nature 341(6242):536–539. doi:10.1038/341536a0

    Article  CAS  PubMed  Google Scholar 

  17. Juusola M, French AS, Uusitalo RO, Weckstrom M (1996) Information processing by graded-potential transmission through tonically active synapses. Trends Neurosci 19(7):292–297. doi:10.1016/S0166-2236(96)10028-X

    Article  CAS  PubMed  Google Scholar 

  18. Rauen T, Taylor WR, Kuhlbrodt K, Wiessner M (1998) High-affinity glutamate transporters in the rat retina: a major role of the glial glutamate transporter GLAST-1 in transmitter clearance. Cell Tissue Res 291(1):19–31

    Article  CAS  PubMed  Google Scholar 

  19. Newman E, Reichenbach A (1996) The Muller cell: a functional element of the retina. Trends Neurosci 19(8):307–312

    Article  CAS  PubMed  Google Scholar 

  20. Lopez T, Lopez-Colome AM, Ortega A (1994) AMPA/KA receptor expression in radial glia. Neuroreport 5(4):504–506

    Article  CAS  PubMed  Google Scholar 

  21. Lopez T, Lopez-Colome AM, Ortega A (1997) NMDA receptors in cultured radial glia. FEBS Lett 405(2):245–248

    Article  CAS  PubMed  Google Scholar 

  22. Lopez T, Lopez-Colome AM, Ortega A (1998) Changes in GluR4 expression induced by metabotropic receptor activation in radial glia cultures. Brain Res Mol Brain Res 58(1–2):40–46

    Article  CAS  PubMed  Google Scholar 

  23. Lopez-Colome AM, Ortega A, Romo-de-Vivar M (1993) Excitatory amino acid-induced phosphoinositide hydrolysis in Muller glia. Glia 9(2):127–135. doi:10.1002/glia.440090206

    Article  CAS  PubMed  Google Scholar 

  24. Lopez-Colome AM, Ortega A (1997) Activation of p42 mitogen-activated protein kinase by glutamate in cultured radial glia. Neurochem Res 22(6):679–685

    Article  CAS  PubMed  Google Scholar 

  25. Lopez-Colome AM, Ortega A, Fragoso G, Trueba E (1997) Excitatory amino acid receptors coupled to the phosphoinositide pathway in Bergmann glia. Neurochem Res 22(3):305–312

    Article  CAS  PubMed  Google Scholar 

  26. Lopez-Colome AM, Murbartian J, Ortega A (1995) Excitatory amino acid-induced AP-1 DNA binding activity in Muller glia. J Neurosci Res 41(2):179–184. doi:10.1002/jnr.490410205

    Article  CAS  PubMed  Google Scholar 

  27. Gonzalez MI, Lopez-Colom AM, Ortega A (1999) Sodium-dependent glutamate transport in Muller glial cells: regulation by phorbol esters. Brain Res 831(1–2):140–145

    Article  CAS  PubMed  Google Scholar 

  28. Sullivan SM, Lee A, Bjorkman ST, Miller SM, Sullivan RK, Poronnik P, Colditz PB, Pow DV (2007) Cytoskeletal anchoring of GLAST determines susceptibility to brain damage: an identified role for GFAP. J Biol Chem 282(40):29414–29423. doi:10.1074/jbc.M704152200

    Article  CAS  PubMed  Google Scholar 

  29. Martinez-Lozada Z, Guillem AM, Flores-Mendez M, Hernandez-Kelly LC, Vela C, Meza E, Zepeda RC, Caba M, Rodriguez A, Ortega A (2013) GLAST/EAAT1-induced glutamine release via SNAT3 in Bergmann glial cells: evidence of a functional and physical coupling. J Neurochem 125(4):545–554. doi:10.1111/jnc.12211

    Article  CAS  PubMed  Google Scholar 

  30. Lawrence JM, Singhal S, Bhatia B, Keegan DJ, Reh TA, Luthert PJ, Khaw PT, Limb GA (2007) MIO-M1 cells and similar muller glial cell lines derived from adult human retina exhibit neural stem cell characteristics. Stem Cells 25(8):2033–2043. doi:10.1634/stemcells.2006-0724

    Article  CAS  PubMed  Google Scholar 

  31. Reichenbach A, Bringmann A (2013) New functions of Muller cells. Glia 61(5):651–678. doi:10.1002/glia.22477

    Article  PubMed  Google Scholar 

  32. Bauer D, Haroutunian V, Meador-Woodruff JH, McCullumsmith RE (2010) Abnormal glycosylation of EAAT1 and EAAT2 in prefrontal cortex of elderly patients with schizophrenia. Schizophr Res 117(1):92–98. doi:10.1016/j.schres.2009.07.025

    Article  PubMed  Google Scholar 

  33. Gadea A, Lopez E, Lopez-Colome AM (2004) Glutamate-induced inhibition of D-aspartate uptake in Muller glia from the retina. Neurochem Res 29(1):295–304

    Article  CAS  PubMed  Google Scholar 

  34. Kanai Y, Clemencon B, Simonin A, Leuenberger M, Lochner M, Weisstanner M, Hediger MA (2013) The SLC1 high-affinity glutamate and neutral amino acid transporter family. Mol Asp Med 34(2–3):108–120. doi:10.1016/j.mam.2013.01.001

    Article  CAS  Google Scholar 

  35. Zhou Y, Danbolt NC (2013) GABA and glutamate transporters in brain. Front Endocrinol 4:165. doi:10.3389/fendo.2013.00165

    Article  Google Scholar 

  36. Maria Lopez-Colome A, Martinez-Lozada Z, Guillem AM, Lopez E, Ortega A (2012) Glutamate transporter-dependent mTOR phosphorylation in Muller glia cells. ASN Neuro. doi:10.1042/AN20120022

    PubMed  PubMed Central  Google Scholar 

  37. Dzamba D, Honsa P, Anderova M (2013) NMDA receptors in glial cells: pending questions. Curr Neuropharmacol 11(3):250–262. doi:10.2174/1570159X11311030002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Uchihori Y, Puro DG (1993) Glutamate as a neuron-to-glial signal for mitogenesis: role of glial N-methyl-D-aspartate receptors. Brain Res 613(2):212–220

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Authors acknowledge Dr. G. Astrid Limb from the Institute of Ophthalmology, University College London for the generous donation of Müller Cell Line MIO-M1-cells. This work was supported by Grants IN200215 from PAPIIT/UNAM to AMLC and 79502 from Conacyt to A.O. O.M.F is supported by a Conacyt-Mexico fellowship. The technical assistance of Luis Cid and Luisa Clara Regina Hernandez-Kelly is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arturo Ortega.

Ethics declarations

Conflict of interest

The authors certify that there is no conflict of interest with any financial organization regarding the material discussed in this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López-Colomé, A.M., López, E., Mendez-Flores, O.G. et al. Glutamate Receptor Stimulation Up-Regulates Glutamate Uptake in Human Müller Glia Cells. Neurochem Res 41, 1797–1805 (2016). https://doi.org/10.1007/s11064-016-1895-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-016-1895-z

Keywords

Navigation