Skip to main content

Advertisement

Log in

Characterization of a diffuse intrinsic pontine glioma cell line: implications for future investigations and treatment

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Diffuse intrinsic pontine gliomas arise almost exclusively in children, and despite advances in treatment, the majority of patients die within 2 years after initial diagnosis. Because of their infiltrative nature and anatomic location in an eloquent area of the brain, most pontine gliomas are treated without a surgical biopsy. The corresponding lack of tissue samples has resulted in a limited understanding of the underlying genetic and molecular biologic abnormalities associated with pontine gliomas, and is a substantial obstacle for the preclinical testing of targeted therapeutic agents for these tumors. We have established a human glioma cell line that originated from surgical biopsy performed on a patient with a pontine glioma. To insure sustainable in vitro propagation, tumor cells were modified with hTERT (human telomerase ribonucleoprotein reverse transcriptase), and with a luciferase reporter to enable non-invasive bioluminescence imaging. The hTERT modified cells are tumorigenic in athymic rodents, and produce brainstem tumors that recapitulate the infiltrative growth of brainstem gliomas in patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Donaldson SS, Laningham F, Fisher PG (2006) Advances toward an understanding of brainstem gliomas. J Clin Oncol 24(8):1266–1272. doi:10.1200/JCO.2005.04.6599

    Article  PubMed  CAS  Google Scholar 

  2. Recinos PF, Sciubba DM, Jallo GI (2007) Brainstem tumors: where are we today? Pediatr Neurosurg 43(3):192–201. doi:10.1159/000098831

    Article  PubMed  Google Scholar 

  3. Finlay JL, Zacharoulis S (2005) The treatment of high grade gliomas and diffuse intrinsic pontine tumors of childhood and adolescence: a historical - and futuristic -perspective. J Neurooncol 75(3):253–266. doi:10.1007/s11060-005-6747-7

    Article  PubMed  CAS  Google Scholar 

  4. Sharp JR, Bouffet E, Stempak D, Gammon J, Stephens D, Johnston DL, Eisenstat D, Hukin J, Samson Y, Bartels U, Tabori U, Huang A, Baruchel S (2010) A multi-centre Canadian pilot study of metronomic temozolomide combined with radiotherapy for newly diagnosed paediatric brainstem glioma. Eur J Cancer 46(18):3271–3279. doi:10.1016/j.ejca.2010.06.115

    Article  PubMed  CAS  Google Scholar 

  5. Huse JT, Phillips HS, Brennan CW (2011) Molecular subclassification of diffuse gliomas: seeing order in the chaos. Glia 59(8):1190–1199. doi:10.1002/glia.21165

    Article  PubMed  Google Scholar 

  6. Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD, Misra A, Nigro JM, Colman H, Soroceanu L, Williams PM, Modrusan Z, Feuerstein BG, Aldape K (2006) Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9(3):157–173. doi:10.1016/j.ccr.2006.02.019

    Article  PubMed  CAS  Google Scholar 

  7. Paugh BS, Broniscer A, Qu C, Miller CP, Zhang J, Tatevossian RG, Olson JM, Geyer JR, Chi SN, da Silva NS, Onar-Thomas A, Baker JN, Gajjar A, Ellison DW, Baker SJ (2011) Genome-wide analyses identify recurrent amplifications of receptor tyrosine kinases and cell-cycle regulatory genes in diffuse intrinsic pontine glioma. J Clin Oncol 29(30):3999–4006. doi:10.1200/JCO.2011.35.5677

    Article  PubMed  CAS  Google Scholar 

  8. Wu G, Broniscer A, McEachron TA, Lu C, Paugh BS, Becksfort J, Qu C, Ding L, Huether R, Parker M, Zhang J, Gajjar A, Dyer MA, Mullighan CG, Gilbertson RJ, Mardis ER, Wilson RK, Downing JR, Ellison DW, Baker SJ (2012) Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet. doi:10.1038/ng.1102

    Google Scholar 

  9. Aoki Y, Hashizume R, Ozawa T, Banerjee A, Prados M, James CD, Gupta N (2012) An experimental xenograft mouse model of diffuse pontine glioma designed for therapeutic testing. J Neurooncol. doi:10.1007/s11060-011-0796-x

    PubMed  Google Scholar 

  10. Hashizume R, Ozawa T, Dinca EB, Banerjee A, Prados MD, James CD, Gupta N (2010) A human brainstem glioma xenograft model enabled for bioluminescence imaging. J Neurooncol 96(2):151–159. doi:10.1007/s11060-009-9954-9

    Article  PubMed  Google Scholar 

  11. Caretti V, Zondervan I, Meijer DH, Idema S, Vos W, Hamans B, Bugiani M, Hulleman E, Wesseling P, Vandertop WP, Noske DP, Kaspers G, Molthoff CF, Wurdinger T (2010) Monitoring of tumor growth and post-irradiation recurrence in a diffuse intrinsic pontine glioma mouse model. Brain Pathol. doi:10.1111/j.1750-3639.2010.00468.x

    PubMed  Google Scholar 

  12. Monje M, Mitra SS, Freret ME, Raveh TB, Kim J, Masek M, Attema JL, Li G, Haddix T, Edwards MS, Fisher PG, Weissman IL, Rowitch DH, Vogel H, Wong AJ, Beachy PA (2011) Hedgehog-responsive candidate cell of origin for diffuse intrinsic pontine glioma. Proc Natl Acad Sci U S A 108(11):4453–4458. doi:10.1073/pnas.1101657108

    Article  PubMed  CAS  Google Scholar 

  13. Sanai N, Wachhorst SP, Gupta NM, McDermott MW (2008) Transcerebellar stereotactic biopsy for lesions of the brainstem and peduncles under local anesthesia. Neurosurgery 63(3):460–466; discussion 466–468. doi:10.1227/01.NEU.0000324731.68843.74

    Google Scholar 

  14. Gunther HS, Schmidt NO, Phillips HS, Kemming D, Kharbanda S, Soriano R, Modrusan Z, Meissner H, Westphal M, Lamszus K (2008) Glioblastoma-derived stem cell-enriched cultures form distinct subgroups according to molecular and phenotypic criteria. Oncogene 27(20):2897–2909. doi:10.1038/sj.onc.1210949

    Article  PubMed  CAS  Google Scholar 

  15. Dinca EB, Sarkaria JN, Schroeder MA, Carlson BL, Voicu R, Gupta N, Berger MS, James CD (2007) Bioluminescence monitoring of intracranial glioblastoma xenograft: response to primary and salvage temozolomide therapy. J Neurosurg 107(3):610–616. doi:10.3171/JNS-07/09/0610

    Article  PubMed  CAS  Google Scholar 

  16. Wang K, Li M, Hadley D, Liu R, Glessner J, Grant SF, Hakonarson H, Bucan M (2007) PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. Genome Res 17(11):1665–1674. doi:10.1101/gr.6861907

    Article  PubMed  CAS  Google Scholar 

  17. Paugh BS, Qu C, Jones C, Liu Z, Adamowicz-Brice M, Zhang J, Bax DA, Coyle B, Barrow J, Hargrave D, Lowe J, Gajjar A, Zhao W, Broniscer A, Ellison DW, Grundy RG, Baker SJ (2010) Integrated molecular genetic profiling of pediatric high-grade gliomas reveals key differences with the adult disease. J Clin Oncol 28(18):3061–3068. doi:10.1200/JCO.2009.26.7252

    Article  PubMed  Google Scholar 

  18. Johnson RA, Wright KD, Poppleton H, Mohankumar KM, Finkelstein D, Pounds SB, Rand V, Leary SE, White E, Eden C, Hogg T, Northcott P, Mack S, Neale G, Wang YD, Coyle B, Atkinson J, DeWire M, Kranenburg TA, Gillespie Y, Allen JC, Merchant T, Boop FA, Sanford RA, Gajjar A, Ellison DW, Taylor MD, Grundy RG, Gilbertson RJ (2010) Cross-species genomics matches driver mutations and cell compartments to model ependymoma. Nature 466(7306):632–636. doi:10.1038/nature09173

    Article  PubMed  CAS  Google Scholar 

  19. Zarghooni M, Bartels U, Lee E, Buczkowicz P, Morrison A, Huang A, Bouffet E, Hawkins C (2010) Whole-genome profiling of pediatric diffuse intrinsic pontine gliomas highlights platelet-derived growth factor receptor alpha and poly (ADP-ribose) polymerase as potential therapeutic targets. J Clin Oncol 28(8):1337–1344. doi:10.1200/JCO.2009.25.5463

    Article  PubMed  CAS  Google Scholar 

  20. Becher OJ, Hambardzumyan D, Walker TR, Helmy K, Nazarian J, Albrecht S, Hiner RL, Gall S, Huse JT, Jabado N, MacDonald TJ, Holland EC (2010) Preclinical evaluation of radiation and perifosine in a genetically and histologically accurate model of brainstem glioma. Cancer Res 70(6):2548–2557. doi:10.1158/0008-5472.CAN-09-2503

    Article  PubMed  CAS  Google Scholar 

  21. Masui K, Suzuki SO, Torisu R, Goldman JE, Canoll P, Iwaki T (2010) Glial progenitors in the brainstem give rise to malignant gliomas by platelet-derived growth factor stimulation. Glia 58(9):1050–1065. doi:10.1002/glia.20986

    Article  PubMed  Google Scholar 

  22. Wen VW, Wu K, Baksh S, Hinshelwood RA, Lock RB, Clark SJ, Moore MA, Mackenzie KL (2006) Telomere-driven karyotypic complexity concurs with p16INK4a inactivation in TP53-competent immortal endothelial cells. Cancer Res 66(22):10691–10700. doi:10.1158/0008-5472.CAN-06-0979

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Pediatric Brain Tumor Foundation Institute Award to the University of California San Francisco, and Timmy’s Rainbow Foundation for Brainstem Tumor Research. The authors also thank Dr. Susan Baker (St. Jude’s Children’s Hospital and Medical Center) for allowing permission to examine copy number data from a published data set of pediatric astrocytic tumors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nalin Gupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hashizume, R., Smirnov, I., Liu, S. et al. Characterization of a diffuse intrinsic pontine glioma cell line: implications for future investigations and treatment. J Neurooncol 110, 305–313 (2012). https://doi.org/10.1007/s11060-012-0973-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-012-0973-6

Keywords

Navigation