Skip to main content
Log in

Effects of Neonatal Increases in Interleukin-1β Levels on the Formation of Spatial Memory in Adult Rats

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Impairments to cognitive functions in in children and adults often result from various pathologies occurring during the prenatal period and early postnatal period of development (birth traumas, hypoxia, infectious diseases). The present study identified impaired learning in a Morris water maze in adult rats given interleukin-1β during the third week of life. Differences between experimental and control animals were seen in learning to find the platform and modifying the acquired skill (on positioning the platform in a new location). There was no change in extinction of the acquired skill. The nature of impairment to learning in experimental animals suggested impairment to the mechanisms long-term but not short-term memory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. M. Klimenko and O. E. Zubareva, “The neurobiology of cytokines, behavior, and adaptive reactions,” Ros. Fiziol. Zh., 85, No. 9, 1244–1254 (1999).

    CAS  Google Scholar 

  2. O. E. Zubareva, A. P. Eliseeva, A. S. Simbirtsev, and V. M. Klimenko, “Effects of proinflammatory cytokines on the establishment of behavior in early postnatal ontogenesis,” Ros. Fiziol. Zh., 91, No. 4, 374–384 (2005).

    CAS  Google Scholar 

  3. O. E. Zubareva, K. P. Shcherbakova, S. V. Kalemenev, et al., “Impairments to conditioned reflex activity in adult rats after administration of interleukin-1β during early postnatal ontogenesis,” Zh. Vyssh. Nerv. Deyat., 61, No. 6, 1–6 (2011).

    Google Scholar 

  4. V. G. Shalyapina, N. E. Ordyan, S. G. Pivina, and V. V. Rakitskaya, “Neuroendocrine mechanisms of formation of adaptive behavior,” Ros. Fiziol. Zh., 81, No. 8, 94–100 (1995).

    Google Scholar 

  5. H. Aly, M. T. Khashaba, M. El-Ayouty, et al., “IL-1β, IL-6 and TNF-α and outcomes of neonatal hypoxic ischemic encephalopathy,” Brain Dev., 28, No. 3, 178–182 (2006).

    Article  PubMed  Google Scholar 

  6. S. D. Bilbo, J. W. Rudy, L. R. Watkins, and S. F. Maier, “A behavioural characterization of neonatal infection-facilitated memory impairment in adult rats,” Behav. Brain Res., 169, No. 1, 39–47 (2006).

    Article  PubMed  Google Scholar 

  7. P. Boksa, “Effects of prenatal infection on brain development and behavior: a review of findings from animal models,” Brain Behav. Immun., 24, No. 6, 881–897 (2010).

    Article  PubMed  Google Scholar 

  8. C. Csolle and B. Sperlagh, “Peripheral origin of IL-1β production in the rodent hippocampus under in vivo systemic bacterial lipopolysaccharide (LPS) challenge and its regulation by P2X7 receptors,” J. Neuroimmunol., 219, No. 1–2, 38–46 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. K. Cui, H. Ashdown, G. N. Luheshi, and P. Boksa, “Effects of prenatal immune activation on hippocampal neurogenesis in the rat,” Schizophrenia Res., 113, No. 2–3, 288–297 (2009).

    Article  Google Scholar 

  10. O. Dammann and A. Leviton, “Maternal intrauterine infection, cytokines, and brain damage in the preterm newborn,” Pediatr. Res., 42, No. 1, 1–8 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. R. Dantzer, “Cytokine-induced sickness behavior: a neuroimmune response to activation of innate immunity,” Eur. J. Pharmacol., 500, 399–411 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. J. H. Gilmore, L. F. Jarskog, S. Vadlamudi, and J. M. Lauder, “Prenatal infection and risk for schizophrenia: IL-1β, IL-6, and TNFα inhibit cortical neuron dendrite development,” Neuropsychopharmacology, 29, No. 7, 1221–1229 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. S. Girard, H. Kadhim, A. Larouche, et al., “Pro-inflammatory disequilibrium of the IL-1β/IL-1ra ratio in an experimental model of perinatal brain damages induced by lipopolysaccharide and hypoxia-ischemia,” Cytokine, 43, No. 1, 54–62 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. I. Goshen, T. Kreisel, H. Ounallah-Saad, et al., “A dual role for interleukin-1 in hippocampal-dependent memory processes,” Psychoneuroendocrinology, 32, No. 8–10, 1106–1115 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. H. F. Green, E. Treacy, A. K. Keohane, et al., “A role for interleukin-1β in determining the lineage fate of embryonic rat hippocampal neural precursor cells,” Mol. Cell. Neurosci., 49, No. 3, 311–321 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. E.-M. Harre, M. A. Galic, A. Mouihate, et al., “Neonatal inflammation produces selective behavioural deficits and alters N-methyl-Daspartate receptor subunit mRNA in the adult rat brain,” Eur. J. Neurosci., 27, No. 3, 644–653 (2008).

    Article  PubMed Central  PubMed  Google Scholar 

  17. T. Ikeda, K. Mishima, N. Aoo, et al., “Dexamethasone prevents longlasting learning impairment following a combination of lipopolysaccharide and hypoxia-ischemia in neonatal rats,” Am. J. Obstet. Gynecol., 192, No. 3, 719–726 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Y. Imamura, H. Wang, N. Matsumoto, et al., “Interleukin-1β causes long-term potentiation deficiency in a mouse model of septic encephalopathy,” Neuroscience, 187, 63–69 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. T. A. Jenkins, M. K. Harte, G. Stenson, and G. P. Reynolds, “Neonatal lipopolysaccharide induces pathological changes in parvalbumin immunoreactivity in the hippocampus of the rat,” Behav. Brain Res., 205, No. 2, 355–359 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. A. Kabiersch, H. Furukawa, A. del Rey, and H. O. Besedovsky, “Administration of interleukin-1 at birth affects dopaminergic neurons in adult mice,” Ann. N.Y. Acad. Sci., 840, 123–127 (1998).

    Google Scholar 

  21. S. Laye, P. Parnet, E. Goujon, and R. Dantzer, “Peripheral administration of lipopolysaccharide induces the expression of cytokine transcripts in the brain and pituitary of mice,” Brain Res. Mol. Brain Res., 27, 157–162 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Z. D. Ling, E. D. Potter, J. W. Lipton, and P. M. Carvey, “Differentiation of mesencephalic progenitor cells into dopaminergic neurons by cytokines,” Exp. Neurol., 149, No. 2,411–423 (1998).

    Google Scholar 

  23. T. Y. Mariano, D. M. Bannerman, S. B. McHugh, et al., “Impulsive choice in hippocampal but not orbitofrontal cortex-lesioned rats on a nonspatial decision-making task,” Eur. J. Neurosci., 30, No. 3, 472–484 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. S. J. Martin and R. E. Clark, “The rodent hippocampal and spatial memory: from synapses to symptoms,” Cell. Mol. Life Sci., 64, No. 4, 401–431 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Y. Matsumoto, M. Yoshida, S. Watanabe, and T. Yamamoto, “Involvement of cholinergic and glutamatergic functions in working memory impairment induced by interleukin-1beta in rats,” Eur. J. Pharmacol., 430, No. 2–3, 283–288 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Y. Matsumoto, T. Yamaguchi, S. Watanabe, and T. Yamamoto, “Involvement of arachidonic acid cascade in working memory impairment induced by interleukin-1β,” Neuropharmacology, 46, No. 8, 1195–1200 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. O. B. Menachem-Zidon, A. Avital, Y. Ben-Menahem, et al., “Astrocytes support hippocampal-dependent memory and long-term potentiation via interleukin-1 signaling,” Brain Behav. Immunol., 25, No. 5, 1008–1016 (2011).

    Article  Google Scholar 

  28. R. Morris, “Development of a water-maze procedure for studying spatial learning in the rat,” J. Neurosci. Meth., 11, No. 1, 47–60 (1984).

    Article  CAS  Google Scholar 

  29. D. Rice and S. J. Barone, “Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models,” Environ. Health Perspect., 108, No. 3, 511–533 (2000).

    PubMed Central  PubMed  Google Scholar 

  30. F. M. Ross, S. M. Allan, N. J. Rothwell, and A. Verkhratsky, “A dual role for interleukin-1 in LTP in mouse hippocampal slices,” J. Neuroimmunol., 144, 61–67 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. A. V. Terry, Jr, C. M. Hernandez, and J. J. Buccafusco, “Dahl salt-sensitive and salt-resistant rats: examination of learning and memory performance, blood pressure, and the expression of central nicotinic acetylcholine receptors,” Neuroscience, 103, No. 2, 351–363 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. M. Tohmi, N. Tsuda, Y. Watanabe, et al., “Perinatal inflammatory cytokine challenge results in distinct neurobehavioral alterations in rats: implication in psychiatric disorders of developmental origin,” Neurosci. Res., 50, No. 1, 67–75 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. L. L. Williamson, P. W. Sholar, R. S. Mistry, et al., “Microglia and memory: modulation by early-life infection,” J. Neurosci., 31, No. 43, 15511–15521 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. R. Yirmiya and I. Goshen, “Immune modulation of learning, memory, neural plasticity and neurogenesis,” Brain Behav. Immun., 25, No. 2, 181–1213 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. R. Yirmiya, G. Winocur, and I. Goshen, “Brain interleukin-1 is involved in spatial memory and passive avoidance conditioning,” Neurobiol. Learning Mem., 78, No. 2, 379–389 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Trofimov.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 98, No. 6, pp. 782–792, June, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trofimov, A.N., Zubareva, O.E., Simbirtsev, A.S. et al. Effects of Neonatal Increases in Interleukin-1β Levels on the Formation of Spatial Memory in Adult Rats. Neurosci Behav Physi 44, 359–364 (2014). https://doi.org/10.1007/s11055-014-9918-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-014-9918-1

Keywords

Navigation