Skip to main content
Log in

Statistical analysis of stretched aluminum nanowires

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

We present a statistical analysis of the mechanical and transport properties of stretched Al nanowires. A molecular dynamics density functional theory is used in combination with annealing techniques to analyze a large amount of stretching processes and new realistic geometries. From these calculations, we generate a conductance histogram that is compared with the experimental evidence. New particular geometries appear frequently, and a correlation between these new structures and the peaks in the conductance histogram can be fairly established. In particular, at the first stages of the nanowire elongation, we find a configuration with Al–Al bonds oriented along the stretching direction that is related to the peak appearing at 3 G 0 in the conductance histogram. Besides, an Al–Al dimer is found in most of the cases at the nanowire neck in the last stage of the nanowire stretching, just before the breaking point; this configuration is reflected in the peak found in the conductance histogram at 1 G 0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. We let the system evolve following free DFT MD until the kinetic energy reaches a maximum. At this point, we set all the atom velocities to zero, and repeat the process until the minimum is obtained.

References

  • Agraït N, Yeyati A, Ruitenbeek JV (2003) Quantum properties of atomic-sized conductors. Phys Rep 377:81–279

    Google Scholar 

  • Basanta MA, Dappe YJ, Jelínek P, Ortega J (2007) Optimized atomic-like orbitals for first-princiles tight-binding molecular dynamics. Comput Mater Sci 39:759

    Google Scholar 

  • Bhushan B (2004) Handbook of nanotechnology. Springer, Berlin

  • Binnig G, Rohrer H, Gerber C, Weibel E (1982) Tunneling through a controllable vacuum gap. Appl Phys Lett 40:178–180

    Google Scholar 

  • Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930–933

    Google Scholar 

  • Blanco JM, González C, Jelínek P, Ortega J, Flores F, Pérez R (2004) First-principles simulations of STM images: from tunneling to the contact regime. Phys Rev B 70:085405(1)–085405(9)

  • Blanco JM, Flores F, Pérez R (2006) STM-theory: image potential, chemistry and surface relaxation. Prog Surf Sci 81:403–443

    Google Scholar 

  • Brandbyge M, Schiøtz J, Sørensen M, Stoltze P, Jacobsen K, Nørskov J, Olesen L, Laegsgaard E, Stensgaard I, Besenbacher F (1995) Quantized conductance in atom-sized wires between two metals. Phys Rev B 52:8499–8514

    Google Scholar 

  • Caroli C, Combescot R, Nozieres P, Saint-James D (1972) Direct calculation of the tunneling current. J Phys C: Sol Stat Phys 4:916–929

    Google Scholar 

  • Chen MS, Goodman DW (2004) The structure of catalytically active gold on titania. Science 306:252–255

    Google Scholar 

  • Datta S (1997) Electronic transport in mesoscopic systems. Cambridge University Press, Cambridge

  • Frank S, Poncharal P, Wang ZL, de Heer WA (1998) Carbon nanotube quantum resistors. Science 280:1744–1746

    Google Scholar 

  • García-Mochales P, Paredes R, Peláez S, Serena PA (2008) Statistical analysis of the breaking processes of Ni nanowires. Nanotechnology 19:225704(1)–225704(9)

  • García-Mochales P, Peláez S, Serena PA, Medina E, Hasmy A (2012) Breaking processes in nickel nanocontacts: a statistical description. Appl Phys A 81:1545–1549

    Google Scholar 

  • García-Vidal FJ, Flores F, Davison SG (2003) Propagator theory of quantum wire transmission. Prog Surf Sci 74:177–184

    Google Scholar 

  • Gimzewski J, Möller R (1987) Transition from the tunneling regime to point contact studied using scanning tunneling microscopy. Phys Rev B 36:1284–1287

    Google Scholar 

  • Gómez-Navarro C, de Pablo PJ, Gómez-Herrero J, Biel B, García-Vidal FJ, Rubio A, Flores F (2005) Tuning the conductance of single-walled carbon nanotubes by ion irradiation in the Anderson localization regime. Nat Mater 4:534–539

    Google Scholar 

  • González C, Ortega J, Flores F, Martínez-Martín D, Gómez-Herrero J (2009) Initial stages of the contact between a metallic tip and carbon nanotubes. Phys Rev Lett 102:106801(1)–106801(4)

  • Häfner M (2009) Ph.D. thesis, Universität Karlsruhe

  • Jelínek P, Pérez R, Ortega J, Flores F (2003) First-principles simulations of the stretching and final breaking of Al nanowires: mechanical properties and electrical conductance. Phys Rev B 68:085403(1)–085403(6)

  • Jelínek P, Pérez R, Ortega J, Flores F (2004) Mechanical properties and electrical conductance of different Al nanowires submitted to an homogeneous deformation: a first-principles simulation. Surf Sci 566:13–23

    Google Scholar 

  • Jelínek P, Pérez R, Ortega J, Flores F (2005a) Universal behaviour in the final stage of the breaking process for metal nanowires. Nanotechnology 16:1023–1028

    Google Scholar 

  • Jelínek P, Wang H, Lewis J, Sankey O, Ortega J (2005b) Multicenter approach to the exchange-correlation interactions in ab initio tight-binding methods. Phys Rev B 71:235101(1)–235101(9)

  • Jelínek P, Pérez R, Ortega J, Flores F (2006) Hydrogen dissociation over Au nanowires and the fractional conductance quantum. Phys Rev Lett 96:046803(1)–046803(4)

  • Jelínek P, Pérez R, Ortega J, Flores F (2008) Ab-initio study of the evolution of the mechanical and transport properties of clean and contaminated Au nanowires along the deformation path. Phys Rev B 77:115447(1)–115447(12)

  • Landauer R (1988) Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM J Res Dev 32:306–316

    Google Scholar 

  • Lewis JP, Glaesemann K, Voth G, Fritsch J, Demkov A, Ortega J, Sankey OF (2001) . Further developments in the local-orbital density-functional-theory tight-binding method. Phys Rev B 64:195103(1)–195103(1)

  • Lewis JP, Jelínek P, Ortega J, Demkov AA, Trabada DG, Haycock B, Wang H, Adams G, Tomfohr JK, Abad E, Drabold DA (2011) Advances and applications in the FIREBALLab initio tight-binding molecular-dynamics formalism. Phys Stat Sol B 248:1989–2007

    Google Scholar 

  • Martín-Rodero A, Flores F, March NH (1988) Tight-binding theory of tunneling current with chemisorbed species. Phys Rev B 38:10047–10050

    Google Scholar 

  • Martínez JI, Abad E, González C, Flores F, Ortega J (2012) Improvement of scanning tunneling microscopy resolution with H-sensitized tips. Phys Rev Lett 108:246102(1)–246102(5)

  • Mingo N, Jurczyszyn L, García-Vidal FJ, Saiz-Pardo R, de Andrés P, Flores F, Wu S, More W (1996) Theory of the scanning tunneling microscope: Xe on Ni and Al. Phys Rev B 54:2225–2235

    Google Scholar 

  • Ortega J, Pérez R, Flores F (2000) A theoretical case study: the Sn/Ge (111)-(3×3) surface. J Phys: Condens Mater 12:L21–L27

    Google Scholar 

  • Pieczyrak B, González C, Jelínek P, Pérez R, Ortega J, Flores F (2008) Mechanical and electrical properties of stretched clean and H-contaminated Pd-nanowires. Nanotechnology 19:335711(1)–335711(8)

  • Rodrigues V, Ugarte D (2002) Metal nanowires: atomic arrangement and electrical transport properties. Nanotechnology 13:404–408

    Google Scholar 

  • Rubio-Bollinger G, Bahn S, Agraït N, Jacobsen K, Vieira S (2001) Mechanical properties and formation mechanisms of a wire of single gold atoms. Phys Rev Lett 87:026101(1)–026101(4)

  • Sankey OF, Niklewski DJ (1989) Ab initio multicenter tight-binding model for molecular-dynamics simulations and other applications in covalent systems. Phys Rev B 40:3979–3995

    Google Scholar 

  • Scheer E, Agraït N, Cuevas JC, Yeyati AL, Ludoph B, Martín-Rodero A, Bollinger G, van Ruitenbeek J, Urbina C (1998) The signature of chemical valence in the electrical conduction through a single-atom contact. Nature 394:154–157

    Google Scholar 

  • Sonawane US, Samuel EP, Zope U, Patil DS (2013) Analysis of electron confinement in GaN/AlxGa1-xN quantum wire nanostructure. Optik 124(9):802–806

    Google Scholar 

  • Sugimoto Y, Pou P, Abe M, Jelínek P, Pérez R, Morita S, Custance O (2007) Chemical identification of individual surface atoms by atomic force microscopy. Nature 446:64–67

    Google Scholar 

  • Talele K, Samuel EP, Patil DS (2011) Analysis of carrier transport properties in GaN/Al0.3Ga0.7N multiple quantum well nanostructures. Optik 122(7):626–630

    Google Scholar 

  • Tans SJ, Devoret MH, Dai H, Thess A, Smalley RE, Geerligs LJ, Dekker C (1997) Individual single-wall carbon nanotubes as quantum wires. Nature 386:474–477

    Google Scholar 

  • Tao NJ (2006) Electron transport in molecular junctions. Nat Nano 1:173–181

    Google Scholar 

  • Todorov T, Sutton A (1993) Jumps in electronic conductance due to mechanical instabilities. Phys Rev Lett 70:2138–2141

    Google Scholar 

  • Wang J (2009) Can man-made nanomachines compete with nature biomotors? ACS Nano 3:4–9

    Google Scholar 

  • Witt W (1997) Absolute prazisionbestimmung von gitterkonstanten and germanium- und aluminium-einkristallen mit elektroneninterferenzen. Zeitschrift für Naturforschung A 22A:92

    Google Scholar 

  • Xu B, Tao NJ (2003) Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 301:1221–1223

    Google Scholar 

  • Yanson A, van Ruitenbeek J (1997) Do histograms constitute a proof for conductance quantization? Phys Rev Lett 79:2157–2157

    Google Scholar 

  • Yeyati A, Flores F, Martín-Rodero A (1999) Transport in multilevel quantum dots: from the kondo effect to the coulomb blockade regime. Phys Rev Lett 83:600–603

    Google Scholar 

  • Yoon B, Häkkinen H, Landman U, Wörz AS, Antonietti JM, Abbet S, Judai K, Heiz U (2005) Charging effects on bonding and catalyzed oxidation of CO on Au8 clusters on MgO. Science 307:403–407

    Google Scholar 

Download references

Acknowledgements

Work supported by Spanish MICIIN (Grant FIS2010-16046) and CAM (Grant S2009/MAT-1467). EA acknowledges financial support by the CAM and FSE. JIM acknowledges funding from Spanish MICIIN and CSIC through “Juan de la Cierva” and “JaeDoc” fellowship Programs, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José I. Martínez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abad, E., González, C., Martínez, J.I. et al. Statistical analysis of stretched aluminum nanowires. J Nanopart Res 16, 2262 (2014). https://doi.org/10.1007/s11051-014-2262-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2262-0

Keywords

Navigation