Skip to main content
Log in

Effect of POSS nanofiller on structure, thermal and mechanical properties of PVDF matrix

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Nanocomposites composed of a poly(vinylidene fluoride) (PVDF) matrix and 0, 3, 5, and 8 wt% trifluoropropyllsobutyl POSS (FPB-POSS) were obtained by the solvent evaporation method. The morphology, crystallization, and thermal properties were investigated. POSS presented in the form of micron-sized aggregations of particles distributed in the PVDF matrix. With the addition of POSS, larger particles of PVDF chains were generated with particle sizes increasing from 40 to 240 nm. A relative high fraction of β phase was observed in the composites. The thermal degradation of PVDF was not significantly affected by FPB-POSS under a nitrogen atmosphere. The mechanical property was investigated by a nanoindentation test to study the influence of FPB-POSS. FPB-POSS acting as nanofiller led to remarkable improvement in mechanical properties, including hardness and elastic property. The size effect was more evident with larger addition of FPB-POSS due to the surface roughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Botelho G, Lanceros-Mendez S et al (2008) Relationship between processing conditions, defects and thermal degradation of poly (vinylidene fluoride) in the [beta]-phase. J Non-Cryst Solids 354(1):72–78

    Article  CAS  Google Scholar 

  • Branciforti MC, Sencadas V et al (2007) New technique of processing highly oriented poly (vinylidene fluoride) films exclusively in the β phase. J Polym Sci 45(19):2793–2801

    Article  CAS  Google Scholar 

  • Brandup J, Immergut E et al (1989) Polymer handbook. Wiley, New York

    Google Scholar 

  • Burgess T, Laws K et al (2008) Effect of loading rate on the serrated flow of a bulk metallic glass during nanoindentation. Acta Mater 56(17):4829–4835

    Article  CAS  Google Scholar 

  • Fina A, Tabuani D et al (2006) Polyhedral oligomeric silsesquioxanes (POSS) thermal degradation. Thermochim Acta 440(1):36–42

    Article  CAS  Google Scholar 

  • Fujisawa N, Swain M (2008) Nanoindentation-derived elastic modulus of an amorphous polymer and its sensitivity to load-hold period and unloading strain rate. J Mater Res 23(3):637–641

    Article  CAS  Google Scholar 

  • Ganesh VA, Nair AS et al (2012) Superhydrophobic fluorinated POSS–PVDF-HFP nanocomposite coating on glass by electrospinning. J Mater Chem 22(35):18479–18485

    Article  CAS  Google Scholar 

  • Garcia ITS, Samios D (1998) Thermomechanical behaviour of semicrystallinepolymers submitted to plane-strain compression. Polymer 39(12):2563–2569

    Article  CAS  Google Scholar 

  • Gomes J, Nunes JS et al (2010) Influence of the β-phase content and degree of crystallinity on the piezo- and ferroelectric properties of poly(vinylidene fluoride). Smart Mater Struct 19:065010

    Article  Google Scholar 

  • Gonzalez RI, Phillips SH et al (2004) In situ atomic oxygen erosion study of fluoropolymer films using X-ray photoelectron spectroscopy. J Appl Polym Sci 92(3):1977–1983

    Article  CAS  Google Scholar 

  • Gregorio R Jr, Borges DS (2008) Effect of crystallization rate on the formation of the polymorphs of solution cast poly (vinylidene fluoride). Polymer 49(18):4009–4016

    Article  CAS  Google Scholar 

  • Gregorio R, Capitao RC (2000) Morphology and phase transition of high melt temperature crystallized poly(vinylidene fluoride). J Mater Sci 35(2):299–306

    Article  CAS  Google Scholar 

  • Gregorio R Jr, Cestari M (1994) Effect of crystallization temperature on the crystalline phase content and morphology of poly (vinylidene fluoride). J Polym Sci 32(5):859–870

    Article  CAS  Google Scholar 

  • Grossman E, Gouzman I (2003) Space environment effects on polymers in low earth orbit. Nucl Instrum Methods Phys Res 208:48–57

    Article  CAS  Google Scholar 

  • Hoflund GB, Gonzalez RI et al (2001) In situ oxygen atom erosion study of a polyhedral oligomeric silsesquioxane-polyurethane copolymer. J Adhesion Sci Technol 15(10):1199–1211

    Article  CAS  Google Scholar 

  • Iacono ST, Vij A et al (2007) Facile synthesis of hydrophobic fluoroalkyl functionalized silsesquioxane nanostructures. Chem Commun 47:4992–4994

    Article  Google Scholar 

  • Lanceros-Mendez S, Mano JF et al (2001) FTIR and DSC studies of mechanically deformed β-PVDF films. ETATS-UNIS, Taylor & Francis journal of macromolecular science-physics, Philadelphia

  • Li X, Lu X (2006) Morphology of polyvinylidene fluoride and its blend in thermally induced phase separation process. J Appl Polym Sci 101(5):2944–2952

    Article  CAS  Google Scholar 

  • Liu Y, Sun Y et al (2012) Morphology, crystallization, thermal, and mechanical properties of poly (vinylidene fluoride) films filled with different concentrations of polyhedral oligomeric silsesquioxane. Polym Eng Sci 53:1364–1373

    Article  Google Scholar 

  • Liu Y, Sun Y et al (2013) Influence of POSS as a nanofiller on the structure, dielectric, piezoelectric and ferroelectric properties of PVDF. Int J Electrochem Sci 8:5688–5697

    CAS  Google Scholar 

  • Ma W, Wang X et al (2010) Effect of MMT, SiO2, CaCO3, and PTFE nanoparticles on the morphology and crystallization of poly(vinylidene fluoride). J Polym Sci 48(20):2154–2164

    Article  CAS  Google Scholar 

  • Mabry JM, Vij A et al (2008) Fluorinated polyhedral oligomeric silsesquioxanes (F-POSS). Angew Chem 120(22):4205–4208

    Article  Google Scholar 

  • Martins JN, Bassani TS et al (2012) Morphological, viscoelastic and thermal properties of poly(vinylidene Fluoride)/POSS nanocomposites. Mater Sci Eng 32(2):146–151

    Article  CAS  Google Scholar 

  • Monticelli O, Waghmare P et al (2009) On the preparation and application of novel PVDF–POSS systems. J Mater Sci 44(7):1764–1771

    Article  CAS  Google Scholar 

  • Neidh fer M, Beaume F et al (2004) Structural evolution of PVDF during storage or annealing. Polymer 45(5):1679–1688

    Article  Google Scholar 

  • Oliver WC, Pharr GM (1992) An Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7(6):1564–1583

    Article  CAS  Google Scholar 

  • Sajkiewicz P, Wasiak A et al (1999) Phase transitions during stretching of poly (vinylidene fluoride). Eur Polym J 35(3):423–429

    Article  CAS  Google Scholar 

  • Schuh CA (2006) Nanoindentation studies of materials. Mater Today 9(5):32–40

    Article  CAS  Google Scholar 

  • Sencadas V, Gregorio Filho R et al (2006) Processing and characterization of a novel nonporous poly (vinilidene fluoride) films in the beta phase. J Non-Cryst Solids 352(21–22):2226–2229

    Article  CAS  Google Scholar 

  • Serrado Nunes J, Wu A et al (2009) Relationship between the microstructure and the microscopic piezoelectric response of the a-and b-phases of poly (vinylidene fluoride). Appl Phys A 95(3):875–880

    Article  CAS  Google Scholar 

  • Shah D, Maiti P et al (2004) Dramatic enhancements in toughness of polyvinylidene fluoride nanocomposites via nanoclay-directed crystal structure and morphology. Adv Mater 16(14):1173–1177

    Article  CAS  Google Scholar 

  • Silva MP, Sencadas V et al (2010) α- and γ-PVDF: crystallization kinetics, microstructural variations and thermal behaviour. Mater Chem Phys 122(1):87–92

    Article  CAS  Google Scholar 

  • Thanganathan U, Nogami M (2012) Effects of SiO2 and P2O5 on structural, thermal and conductivity properties of inorganic materials doped with PVDF. RSC Adv 2(25):9596–9605

    Article  CAS  Google Scholar 

  • VanLandingham MR, Villarrubia JS et al (2001) Nanoindentation of polymers: an overview. Macromolecular symposia, Wiley-Blackwell, Hoboken

  • Wu J, Mather PT (2009) POSS polymers: physical properties and biomaterials applications. J Macromol Sci 49:25–63

    CAS  Google Scholar 

  • Zeng FL, Sun Y et al (2009) Molecular simulations of the miscibility in binary mixtures of PVDF and POSS compounds. Model Simul Mater Sci Eng 17(7):075002

    Article  Google Scholar 

  • Zeng F, Liu Y et al (2012) Nanoindentation, nanoscratch, and nanotensile testing of poly(vinylidene fluoride)-polyhedral oligomeric silsesquioxane nanocomposites. J Polym Sci 50(23):1597–1611

    Article  CAS  Google Scholar 

  • Zeng FL, Sun Y et al (2011) A molecular dynamics simulation study to investigate the elastic properties of PVDF and POSS nanocomposites. Model Simul Mater Sci Eng 19(2):025005

    Article  Google Scholar 

  • Zhao M, Slaughter WS et al (2003) Material-length-scale-controlled nanoindentation size effects due to strain-gradient plasticity. Acta Mater 51(15):4461–4469

    Article  CAS  Google Scholar 

  • Zhou Z, Cui L et al (2008) Preparation and properties of POSS grafted polypropylene by reactive blending. Eur Polym J 44(10):3057–3066

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National Natural Science Foundation of China (11272108, 11102053) and the Science and Technology Innovation Talents Special Fund of Harbin (Grant No. 2012RFQXG001) for the financial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Sun, Y., Zeng, F. et al. Effect of POSS nanofiller on structure, thermal and mechanical properties of PVDF matrix. J Nanopart Res 15, 2116 (2013). https://doi.org/10.1007/s11051-013-2116-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-2116-1

Keywords

Navigation