Skip to main content
Log in

Broom-like and flower-like heterostructures of silver molybdate through pH controlled self assembly

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Silver molybdate microrods are self-assembled into micron sized, broom-like and flower-like structures. Our investigations indicate that through a simple hydrothermal process, large scale production of such structure is possible. Using ammonium molybdate and silver nitrate solutions as precursors, we were able to show that the self assembled architectures were dependent on the pH of the starting precursor material. To understand the formation and destructions of the flower-like morphology, a systematic broad range (from acidic to basic) of pH-controlled experiments were performed and its influence on the structure/microstructure of synthesized materials was investigated. Scanning electron microscopy studies revealed that the morphology and microstructure of the products varied significantly by changing pH values from 3 to 8 during mixing of the reactants. pH = 3 and 4 resulted in the self assembly of monoclinic Ag2(Mo2O7) microrods into broom-like structures, whereas pH = 5 resulted into the flower-like morphology of mixed phase of monoclinic and triclinic Ag2Mo2O7. We also found that increasing the pH after a certain threshold value (for example pH > 6) resulted in total collapse of the flower-like morphology. Further increase of the pH to 7 and 8 resulted, the formation of microparticles of Ag2MoO4. A tentative scheme based on the pH-driven evolution of the self-assembly has been given to explain the formation of the observed heterostructures. Preliminary electrical characterization of thin films of the flower-like structures rendered non-linear current–voltage (I–V) responses. We also observed a strong hysteresis in the I–V responses of the flower-like structures developed under high bias conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Appell D (2002) Nanotechnology: wired for success. Nature 419:553–555

    Article  CAS  Google Scholar 

  • Bazarov BG, Grossman VG, Klevtsova RF, Anshits G, Vereshchagina TA, Glinskaya LA, Tushinova YL, Fedorov KN, Bazarova ZG (2009) Crystal structure of binary molybdate Pr2Hf3(MoO4)9. J Struct Chem 50:566–569

    Article  CAS  Google Scholar 

  • Bertoni MI, Kidner NJ, Mason TO, Albrecht TA, Sorensen EM, Poeppelmeier KR (2007) Electrical and optical characterization of Ag2V4O11 and Ag4V2O6F2. J Electroceram 18:189–195

    Article  CAS  Google Scholar 

  • Bhattacharya S, Ghosh A (2005) Transport properties of AgI doped silver molybdate superionic glass-nanocomposites. J Phys Condens Matter 17:5655–5662

    Article  CAS  Google Scholar 

  • Cheng L, Shao Q, Shao M, Wei X, Wu Z (2009) Photoswitches of one-dimensional Ag2MO4 (M = Cr, Mo, and W). J Phys Chem C 113:1764–1768

    Article  CAS  Google Scholar 

  • Cui X, Yu SH, Li L, Biao L, Li H, Mo M, Liu XM (2004) Selective synthesis and characterization of single-crystal silver molybdate/tungstate nanowires by a hydrothermal process. Chem Eur J 10:218–223

    Article  CAS  Google Scholar 

  • Dong F, Huang Y, Zou S, Liu J, Lee SC (2011) Ultrasonic spray pyrolysis fabrication of solid and hollow PbWO4 spheres with structure-directed photocatalytic activity. J Phys Chem C 115:241–247

    Article  CAS  Google Scholar 

  • Driscoll S, Ozkan US (1994) Isotopic labeling studies on oxidative coupling of methane over alkali promoted molybdate catalysts. Stud Surf Sci Catal 82:367–375

    Article  CAS  Google Scholar 

  • Ehrenberg E, Weitzely H, Heidy C, Fuessy H, Wltschekz G, Kroenerx T, van Tol J, Bonnet M (1997a) Magnetic phase diagrams of MnWO4. J Phys Condens Matter 9:3189–3203

    Article  CAS  Google Scholar 

  • Ehrenberg H, Weitzel H, Paulus H, Wiesmann M, Wltschek G, Geselle M, Fuess H (1997b) Crystal structure and magnetic properties of CuMoO4 at low temperature (γ-phase). J Phys Chem Solids 58:153–160

    Article  CAS  Google Scholar 

  • Feilchenfeld H, Siiman O (1986) Adsorption and aggregation kinetics and its fractal description for chromate, molybdate, and tungstate ions on colloidal silver from surface Raman spectra. J Phys Chem 90:4590–4599

    Article  CAS  Google Scholar 

  • Goldberger J, He R, Zhang Y, Lee S, Yan H, Choi HJ, Yang P (2003) Single-crystal gallium nitride nanotubes. Nature 422:599–602

    Article  CAS  Google Scholar 

  • Gulbinski W, Suszko T (2006) Thin films of MoO3–Ag2O binary oxides the high temperature lubricants. Wear 261:867–873

    Article  CAS  Google Scholar 

  • Gulbinski W, Suszko T, Sienicki W, Warcholinski B (2003) Tribological properties of silver- and copper-doped transition metal oxide coatings. Wear 254:129–135

    Article  CAS  Google Scholar 

  • Guo J, Zavalij P, Stanley WM (1995) Metastable hexagonal molybdates: hydrothermal preparation, structure, and reactivity. J Solid State Chem 117:323–332

    Article  CAS  Google Scholar 

  • Holtz RD, Filho AGS, Brocchi M, Martins D, Durán N, Alves OL (2010) Development of nanostructured silver vanadates decorated with silver nanoparticles as a novel antibacterial agent. Nanotechnology 21:185102–185110

    Article  CAS  Google Scholar 

  • Hu B, Mai L, Chen W, Yang F (2009) From MoO3 nanobelts to MoO2 nanorods: structure transformation and electrical transport. ACS Nano 3:478–482

    Article  CAS  Google Scholar 

  • Ito T, Takagi H, Asano T (2009) Drastic and sharp change in color, shape, and magnetism in transition of CuMoO4 single crystals. Chem Mater 21:3376–3379

    Article  CAS  Google Scholar 

  • Kozma P, Bajgar R, Kozma JP (2002) Radiation damage of PbWO4 crystals due to radiation by 60Co gamma-rays. Radiat Phys Chem 65:127–130

    Article  CAS  Google Scholar 

  • Krol R, Liang Y, Schoonman J (2008) Solar hydrogen production with nanostructured metal oxides. J Mater Chem 18:2311–2320

    Article  Google Scholar 

  • Li X, Zang J (2009) Facile hydrothermal synthesis of sodium tantalate (NaTaO3) nanocubes and high photocatalytic properties. J Phys Chem C 113:19411–19418

    Article  CAS  Google Scholar 

  • Li Y, Qian F, Xiang J, Lieber CM (2006) Nanowire electronic and optoelectronic devices. Mater Today 9:18–27

    Article  CAS  Google Scholar 

  • Liao HW, Wang YF, Liu XM, Li YD, Qian YT (2000) Hydrothermal preparation and characterization of luminescent CdWO4 nanorods. Chem Mater 12:2819–2821

    Article  CAS  Google Scholar 

  • Lu J, Li Y, Shen E, Yuan M, Wang E, Hu C, Xu L (2004) Hydrothermal synthesis and crystal structure of a novel two-dimensional organic–inorganic hybrid copper molybdate with mixed organodiamine and dicarboxyl ligands. J Solid State Chem 177:1771–1775

    Article  CAS  Google Scholar 

  • Machida N, Eckert H (1998) FT-IR, FT-Raman and 95MoMAS–NMR studies on the structure of ionically conducting glasses in the system AgI–Ag2O–MoO3. Solid State Ion 107:255–268

    Article  CAS  Google Scholar 

  • Mai L, Xu L, Gao Q, Han C, Hu B, Pi Y (2010) Single-AgVO3 nanowire H2S sensor. Nano Lett 10:2604–2612

    Article  CAS  Google Scholar 

  • Mougin O, Dubois JL, Mathieu F, Rousset A (2000) Metastable hexagonal vanadium molybdate study. J Solid State Chem 152:353–360

    Article  CAS  Google Scholar 

  • Nagaraju G, Tharamani CN, Chandrappa GT, Livage J (2007) Hydrothermal synthesis of amorphous MoS2 nanofiber bundles via acidification of ammonium heptamolybdate tetrahydrate. Nanoscale Res Lett 2:461–468

    Article  CAS  Google Scholar 

  • Newton MC, Leake SJ, Harder R, Robinson IK (2009) Three-dimensional imaging of strain in a single ZnO nanorod. Nat Mater 9:120–124

    Article  Google Scholar 

  • Nyman M, Rodriguez MA, Rohwer LES, Martin JE, Waller M, Osterloh FE (2009) Unique LaTaO4 polymorph for multiple energy applications. Chem Mater 21:4731–4737

    Article  CAS  Google Scholar 

  • Pan H, Feng YP (2008) Semiconductor nanowires and nanotubes: effects of size and surface-to-volume ratio. ACS Nano 2:2410–2414

    Article  CAS  Google Scholar 

  • Pan GT, Lai MH, Juang RC, Chung TW, Yang TCK (2011) Preparation of visible-light-driven silver vanadates by a microwave- assisted hydrothermal method for the photodegradation of volatile organic vapors. Ind Eng Chem Res 50:2807–2814

    Article  CAS  Google Scholar 

  • Panchal V, Garg N, Sharma SM (2006) Raman and X-ray diffraction investigations on BaMoO4 under high pressures. J Phys Condens Matter 18:3917–3929

    Article  CAS  Google Scholar 

  • Qu W, Wlodarski W, Meyer JU (2000) Comparative study on micromorphology and humidity sensitive properties of thin-film and thick-film humidity sensors based on semiconducting MnWO4. Sens Actuators B64:76–82

    CAS  Google Scholar 

  • Readman JE, Lister SE, Peters L, Wright J, Evans JSO (2009) Direct synthesis of cubic ZrMo2O8 followed by ultrafast in situ powder diffraction. J Am Chem Soc 131:17560–17562

    Article  CAS  Google Scholar 

  • Singh DP (2010) Synthesis and growth of ZnO nanowires. Sci Adv Mater 2:245–272

    Article  CAS  Google Scholar 

  • Singh DP, Ali N (2010) Synthesis of TiO2 and CuO nanotubes and nanowires. Sci Adv Mater 2:295–335

    Article  CAS  Google Scholar 

  • Singh DP, Polychronopoulou K, Rebholz C, Aouadi SM (2010) Room temperature synthesis and high temperature frictional study of silver vanadate nanorods. Nanotechnol 21:325601–325608

    Article  CAS  Google Scholar 

  • Song RQ, Xu AW, Deng B, Fang YP (2005) Novel multilamellar mesostructured molybdenum oxide nanofibers and nanobelts: synthesis and characterization. J Phys Chem B 109:22758–22766

    Article  CAS  Google Scholar 

  • Tian ZR, Voigt JA, Liu J, Mckenzie B, Mcdermott MJ, Rodriguez MA, Konishi H, Xu H (2003) Complex and oriented ZnO nanostructures. Nat Mater 2:821–826

    Article  CAS  Google Scholar 

  • Tian H, Wachs IE, Briand LE (2005) Comparison of UV and visible Raman spectroscopy of bulk metal molybdate and metal vanadate catalysts. J Phys Chem B 109:23491–23499

    Article  CAS  Google Scholar 

  • Van Uitert LG, Preziosi S (1962) Zinc tungstates for microwave maser applications. J Appl Phys 33:2908–2910

    Article  Google Scholar 

  • Vijayaraghavan A, Kanzaki K, Suzuki S, Kobayashi Y, Inokawa H, Ono Y, Kar S, Ajayan PM (2005) Metal-semiconductor transition in single-walled carbon nanotubes induced by low-energy electron irradiation. Nano Lett 5:1575–1579

    Article  CAS  Google Scholar 

  • Wang H, Medina FD, Zhou YD, Zhang QN (1992) Temperature dependence of the polarized Raman spectra of ZnWO4 single crystals. Phys Rev B 45:10356–10362

    Article  CAS  Google Scholar 

  • Wang H, Medina FD, Liu D, Zhou YD (1994) The line shape and zero-phonon line of the luminescence spectrum from zinc tungstate single crystals. J Phys Condens Matter 6:5373–5386

    Article  CAS  Google Scholar 

  • White CT, Todorov TN (2001) Quantum electronics: nanotubes go ballistic. Nature 411:649–651

    Article  CAS  Google Scholar 

  • Wu J, Duan F, Zheng Y, Xie Y (2007) Synthesis of Bi2WO6 nanoplate-built hierarchical nest-like structures with visible-light-induced photocatalytic activity. J Phys Chem C 111:12866–12871

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Science Foundation (Award # CMMI-0653986), the U.S. Department of the ARMY (Award # W911NF-08-1-0460), an award from the Air Force Summer Fellowship Program and author D P Singh acknowledge the financial support from the CONICYT CHILE (FONDECYT REGULAR) Project award no 1120644. The authors also wish to thank Professor Naushad Ali and Dr. Igor Dubenko of the Southern Illinois University Laboratory for their assistance with X-ray measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. P. Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, D.P., Sirota, B., Talpatra, S. et al. Broom-like and flower-like heterostructures of silver molybdate through pH controlled self assembly. J Nanopart Res 14, 781 (2012). https://doi.org/10.1007/s11051-012-0781-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-0781-0

Keywords

Navigation