Skip to main content
Log in

Thermal conductivity and thermal diffusivity of SiO2 nanopowder

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A 3ω approach for the simultaneous determination of the effective thermal conductivity and thermal diffusivity of nanopowder materials was developed. A 3ω experimental system was established, and the thermal properties of water and alcohol were measured to validate and estimate the accuracy of the current experimental system. The effective thermal conductivity and thermal diffusivity of the SiO2 nanopowder with 375, 475, and 575 nm diameters were measured at 290–490 K and at different densities. At room temperature, the effective thermal conductivity and thermal diffusivity of the SiO2 nanopowder increased with temperature; however, both values decreased as the particle diameter was reduced. An optimum SiO2 powder density that decreased with decreasing diameter was also observed within the measurement range. The minimum effective thermal conductivity and maximum effective thermal diffusivity were obtained at 85 × 10−3 kg/L, when the particle diameter was 575 nm. The optimum densities of the particles with 375 and 475 nm diameters were less than 50.23 × 10−3 and 64.82 × 10−3 kg/L, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Cahill DG (1990) Thermal conductivity measurement from 30 to 750 K: the 3ω method. Rev Sci Instrum 61(2):802–808

    Article  CAS  Google Scholar 

  • Cahill DG, Pohl RO (1987) Thermal conductivity of amorphous solids above the plateau. Phys Rev B 35(8):4067–4073

    Article  CAS  Google Scholar 

  • Cullum Brian M, Griffin Guy D, Miller GH et al (2000) Intracellular measurements in mammary carcinoma cells using fiber-optic nanosensors. Anal Biochem 277(1):25–32

    Article  Google Scholar 

  • Deng ZS, Wang J, Aimei Wu et al (1998) High strength SiO aerogel insulation. J Non-Cryst Solids 225:101–104

    Article  CAS  Google Scholar 

  • Fang CL, Song DS (2000) Synthesis of xonotlite-type calcium silicate insulation product by konilite. Non-Metal Mines 23(2):28–29

    CAS  Google Scholar 

  • Fricke J, Tillotson T (1997) Aerogels: production, characterization, and applications. Thin Solid Films 297:212–223

    Article  CAS  Google Scholar 

  • Fricke J, Schwab H, Heinemann U (2006) Vacuum insulation panels exciting thermal properties and most challenging applications. Int J Thermophys 27(4):1123–1139

    Article  CAS  Google Scholar 

  • Gabrielson L, Edirisinghe MJ (1996) On the dispersion of fine ceramic powders in polymers. J Mater Sci Lett 15(13):1105–1107

    Article  CAS  Google Scholar 

  • Hwang SW, Jung HH, Hyun SH et al (2007) Effective preparation of cracks free silica aero gels via ambient drying. J Sol-Gel Sci Technol 41:139–146

    Article  CAS  Google Scholar 

  • Kubicar L (1990) Pulse method of measuring basic thermophysical parameters. Comp Anal Chem Therm Analy E XII:350

    Google Scholar 

  • Lee D, Peter Stevens C, Zeng SQ et al (1995) Thermal characterization of arbon-opacified silica aerogels. J Non-Crys Solids 186:285–290

    Article  CAS  Google Scholar 

  • Leno M, Prezzi L et al (2006) Substantiating the role of phase bicontinuity and interfacial bonding in epoxy-silica nanocomposites. J Mater Sci 41(4):1145–1155

    Article  Google Scholar 

  • Lu XP, Wang P, Buttner D et al (1991) Thermal transport in opacities monolithic silica aerogels. High Temp High Pressure 23(4):431–436

    CAS  Google Scholar 

  • Lu X, Caps R, Fricke J et al (1995) Correlation between structure and thermal conductivity of organic aero gels. J Non-Cryst Solids 188(3):226–234

    Article  CAS  Google Scholar 

  • Reddy CS, Das CK (2005) HLDPE/organic functionalized SiO2 nanocomposites with improved thermal stability and mechanical properties. Compos Interface 1(8–9):687–699

    Article  Google Scholar 

  • Siegel R, Howell JR (2002) Thermal radiation heat transfer, 4th edn. Taylor & Francis, New York

    Google Scholar 

  • Wang ZL, Tang DW (2007) Analytical solution for temperature oscillation in the heater/thermometer film in 3ω method and its application to thermal conductivity measurement of micro/nanometer-films. Acta Phys Sin 56(2):747–754

    CAS  Google Scholar 

  • Wang ZL, Tang DW, Liu S et al (2007a) Thermal conductivity and thermal diffusivity measurements of nanofluids by 3ω method and mechanism analysis of heat transport. Int J Thermophys 28(4):1255–1268

    Article  CAS  Google Scholar 

  • Wang ZL, Tang DW, Zheng XH (2007b) Simultaneous determination of thermal conductivities of coating film and substrate by extending 3ω-method to wide-frequency range. Appl Surf Sci 253(22):9024–9029

    Article  CAS  Google Scholar 

  • Wang ZL, Tang DW, Zheng XH et al (2007c) Length-dependent thermal conductivity of single-wall carbon nanotube: prediction and measurements. Nanotechnology 18:475714 (4pp)

    Article  Google Scholar 

  • Wang ZL, Tang DW, Zhang WG et al (2007d) Length-dependent thermal conductivity of an individual single-wall carbon nanotube. Appl Phys Lett 91(12):123119–123121

    Article  Google Scholar 

  • Wu XF, Tian YJ, Cui YB et al (2007) Raspberry-like silica hollow spheres: hierarchical structures by dual latex- surfactant templating route. J Phys Chem C 111:9704–9708

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support provided by the National Natural Science Foundation of China (Grant No. 51106151) and the National Basic Research Program of China (Grant No.2012CB933200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinghua Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, X., Qiu, L., Su, G. et al. Thermal conductivity and thermal diffusivity of SiO2 nanopowder. J Nanopart Res 13, 6887–6893 (2011). https://doi.org/10.1007/s11051-011-0596-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-011-0596-4

Keywords

Navigation