Skip to main content
Log in

Template-directed nucleation and growth of CdS nanocrystal: the role of helical and nonhelical nanofibers on their shape and size

  • Brief Communication
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

This study describes the use of chiral nature of synthetic self-assembled nanofibers for nucleation and growth of Cadmium sulfide (CdS) nanocrystals with different sizes and shapes in room temperature. The templates are built by immobilizing a peptide capping agent on the surface of synthetic self-assembled helical or nonhelical nanofibers and CdS nanocrystals were allowed to grow on them. It is observed that there are differences in shapes and sizes of the nanocrystals depending on the chiral nature of the nanofibers on which they were growing. Even the CdS nanocrystals grown on different chiral and achiral nanofibers differ markedly in their photoluminescence properties. Thus, here we introduce a new way of using chirality of nanofibers to nucleate and grow CdS nanocrystals of different shape, size, and optical property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Banerjee IA, Yu L et al (2005) Room-temperature Wurtzite ZnS nanocrystal growth on Zn finger-like peptide nanotubes by controlling their unfolding peptide structures. J Am Chem Soc 127:16002–16003

    Article  CAS  PubMed  Google Scholar 

  • Bose PP, Drew MGB et al. (2006) Formation of triple helical nanofibers using self-assembling chiral benzene-1,3,5-tricarboxamides and reversal of the nanostructure’s handedness using mirror image building blocks. Chem Commun 3196–3198

  • Bose PP, Drew MGB et al (2007) Decoration of au and ag nanoparticles on self-assembling pseudopeptide-based nanofiber by using a short peptide as capping agent for metal nanoparticles. Org Lett 9:2489–2492

    Article  CAS  PubMed  Google Scholar 

  • Bull SR, Guler MO et al (2005) Self-assembled peptide amphiphile nanofibers conjugated to MRI contrast agents. Nano Lett 5:1–4

    Article  CAS  PubMed  ADS  Google Scholar 

  • Cheng Y, Wang YS et al (2006) Shape control of monodisperse CdS nanocrystals: hexagon and pyramid. J Phys Chem B 110:9448–9451

    Article  CAS  PubMed  Google Scholar 

  • Chu HB, Li XM et al (2005) Shape-controlled synthesis of CdS nanocrystals in mixed solvents. Cryst Growth Des 5:1801–1806

    Article  CAS  Google Scholar 

  • Djalali R, Chen Y et al (2002) Au nanowire fabrication from sequenced histidine-rich peptide. J Am Chem Soc 124:13660–13661

    Article  CAS  PubMed  Google Scholar 

  • Dulkeith E, Ringler M et al (2005) Gold nanoparticles quench fluorescence by phase induced radiative rate suppression. Nano Lett 5:585–589

    Article  CAS  PubMed  ADS  Google Scholar 

  • Huang Y, Chiang CY et al (2005) Programmable assembly of nanoarchitectures using genetically engineered viruses. Nano Lett 5:1429–1434

    Article  CAS  PubMed  MathSciNet  ADS  Google Scholar 

  • Jiang XC, Zeng QH et al (2006) A self-seeding coreduction method for shape control of silver nanoplates. Nanotechnology 17:4929–4935

    Article  CAS  ADS  Google Scholar 

  • Jiao Y, Yu DB et al (2007) Synthesis, nonlinear optical properties and photoluminescence of ZnSe quantum dots in stable solutions. Mater Lett 61:1541–1543

    Article  CAS  Google Scholar 

  • Lee SK, Yun DS et al (2006) Cobalt ion mediated self-assembly of genetically engineered bacteriophage for biomimetic Co-Pt hybrid material. Biomacromolecules 7:14–17

    Article  CAS  PubMed  Google Scholar 

  • Lisiecki I (2005) Size, shape, and structural control of metallic nanocrystals. J Phys Chem B 109:12231–12244

    Article  CAS  PubMed  Google Scholar 

  • Ma XY, Shi WL et al (2006) The size dependence of the optical and electrical properties of Ge quantum dots deposited by pulsed laser deposition. Semicond Sci Technol 21:713–716

    Article  CAS  MathSciNet  ADS  Google Scholar 

  • Mohamed MB, Tonti D et al (2005) Chemical synthesis and optical properties of size-selected CdSe tetrapod-shaped nanocrystals. Chemphyschem 6:2505–2507

    Article  CAS  PubMed  Google Scholar 

  • Nair PS, Fritz KP et al (2007) Evolutionary shape control during colloidal quantum-dot growth. Small 3:481–487

    Article  CAS  PubMed  Google Scholar 

  • Niemeyer CM (2000) Self-assembled nanostructures based on DNA: towards the development of nanobiotechnology. Curr Opin Chem Biol 4:609–618

    Article  CAS  PubMed  Google Scholar 

  • Peelle BR, Krauland EM et al (2005) Design criteria for engineering inorganic material-specific peptides. Langmuir 21:6929–6933

    Article  CAS  PubMed  Google Scholar 

  • Pellegrino T, Kudera S et al (2005) On the development of colloidal nanoparticles towards multifunctional structures and their possible use for biological applications. Small 1:48–63

    Article  CAS  PubMed  Google Scholar 

  • Perez A, Melinon P et al (2001) Nanostructured materials from clusters: synthesis and properties. Mater Trans 42:1460–1470

    Article  CAS  Google Scholar 

  • Rabatic BM, Claussen RC et al (2005) Templated mineralization of peptide-based unsymmetric bolaamphiphiles. Chem Mater 17:5877–5879

    Article  CAS  Google Scholar 

  • Sadhu S, Sen T et al (2008) Phase and shape controlled synthesis of CdS nanocrystals and their characterization. J Nanosci Nanotechnol 8:1238–1243

    Article  CAS  PubMed  Google Scholar 

  • Son JM, Lee EK et al (2006) Electrical properties of a silicon nanocrystal embedded in a thin oxide layer. Jpn J Appl Phys 45:2386–2389

    Article  CAS  ADS  Google Scholar 

  • Wang Q, Pan DC et al (2006) A solvothermal route to size- and shape-controlled CdSe and CdTe nanocrystals. J Cryst Growth 286:83–90

    Article  CAS  ADS  Google Scholar 

  • Wang DS, Zheng W et al (2009) A synthetic method for transition-metal chalcogenide nanocrystals. Chem Eur J 15:1870–1875

    Article  CAS  Google Scholar 

  • Yong KT, Sahoo Y et al (2007) Shape control of CdS nanocrystals in one-pot synthesis. J Phys Chem C 111:2447–2458

    Article  CAS  Google Scholar 

  • Zhang H, Yang D et al (2005) Some critical factors in the synthesis of US nanorods by hydrothermal process. Mater Lett 59:3037–3041

    Article  CAS  Google Scholar 

  • Zhao Z, Banerjee IA et al (2005) Simultaneous targeted immobilization of anti-human IgG-coated nanotubes and anti-mouse IgG-coated nanotubes on the complementary antigen-patterned surfaces via biological molecular recognition. J Am Chem Soc 127:8930–8931

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are thankful to Dr. Urmimala Chatterjee, Karolinska Institute, Sweden for helpful discussions. PPB thanks C.S.I.R New Delhi, India for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Partha Pratim Bose.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1673 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bose, P.P., Banerjee, A. Template-directed nucleation and growth of CdS nanocrystal: the role of helical and nonhelical nanofibers on their shape and size. J Nanopart Res 12, 713–718 (2010). https://doi.org/10.1007/s11051-010-9851-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-010-9851-3

Keywords

Navigation