Skip to main content
Log in

Fabrication of magnetic gold nanorod particles for immunomagnetic separation and SERS application

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The preparation and application of rod-shaped core–shell structured Fe3O4–Au nanoparticles for immunomagnetic separation and sensing were described for the first time with this study. To synthesize magnetic gold nanorod particles, the seed-mediated synthetic method was carried out and the resulting nanoparticles were characterized with transmission electron microscopy (TEM), ultraviolet visible spectroscopy (UV–Vis), energy-dispersive X-ray (EDX), and X-ray diffraction (XRD). Magnetic properties of the nanoparticles were also examined. Characterization of the magnetic gold nanorod particles has proven that the resulting nanoparticles were composed of Fe3O4 core and the gold shell. The rod-shaped gold-coated iron nanoparticles have an average diameter of 16 ± 2 nm and an average length of about 50 ± 5 nm (corresponding aspect ratio of 3). The saturation magnetization value for the magnetic gold nanorod particles was found to be 37 emu/g at 300 K. Rapid and room temperature reaction synthesis of magnetic gold nanorod particles and subsequent surface modification with E. coli antibodies provide immunomagnetic separation and SERS application. The analytical performance of the SERS-based homogenous sandwich immunoassay system with respect to linear range, detection limit, and response time is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Banholzer MJ, Millstone JE, Qin L, Mirkin CA (2008) Rationally designed nanostructures for surface-enhanced Raman spectroscopy. Chem Soc Rev 37:885–897

    Article  CAS  Google Scholar 

  • Bell SEJ, Sirimuthu NMS (2006) Surface enhanced Raman spectroscopy (SERS) for sub-micromolar detection of DNA/RNA mononucleotides. J Am Chem Soc 128:15580–1558

    Google Scholar 

  • Bong HJ, Mi SN, Gunsung K, Homan K, Jong HK, Woo JC, Min SK, Yong KK, Myung HC, Dae HJ, Yoon SL (2009) Protein separation and identification using magnetic beads encoded with surface-enhanced Raman spectroscopy. Anal Biochem 391:24–30

    Article  Google Scholar 

  • Caswell KK, Wilson JN, Bunz UHF, Murphy CJ (2003) Preferential end-toend assembly of gold nanorods by biotin-streptavidin connectors. J Am Chem Soc 125:13914–13915

    Article  CAS  Google Scholar 

  • Cho SJ, Idrobo JC, Olamit J, Liu K, Browning ND, Kauzlarich SM (2005) Growth mechanism and oxidation resistance of gold-coated iron nanoparticles. Chem Mater 17:3181–3186

    Article  CAS  Google Scholar 

  • Drachev VP, Thoreson MD, Nashine V, Khaliullin EN, Amotz DB, Davisson VJ, Shalaen VM (2005) Adaptive silver films for surface-enhanced Raman spectroscopy of biomolecules. J Raman Spectrosc 36:648–656

    Article  CAS  Google Scholar 

  • Dutta RK, Sharma PK, Pandey AC (2009) Surface enhanced Raman spectra of E. coli cells using ZnO nanoparticles. Dig J Nanomater Biostruct 4:83–87

    Google Scholar 

  • Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277:1078–1081

    Article  CAS  Google Scholar 

  • Fabris L, Dante M, Nguyen TQ, Tok JBH, Bazan GC (2008) SERS aptatags: new responsive metallic nanostructures for heterogenous protein detection by surface enhanced Raman spectroscopy. Adv Funct Mater 18:2518–2825

    Article  CAS  Google Scholar 

  • Gole A, Stone JW, Gemmill WR, Loye HJ, Murphy CJ (2008) Iron oxide coated gold nanorods: synthesis, characterization, and manipulation. Langmuir 24:6232–6237

    Article  CAS  Google Scholar 

  • Gou L, Murphy CJ (2005) Fine-tuning the shape of gold nanorods. Chem Mater 17:3668–3672

    Article  CAS  Google Scholar 

  • Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021

    Article  CAS  Google Scholar 

  • Heitsch AT, Smith DK, Patel RN, Ress D, Korgel BA (2008) Multi functional particles: magnetic nanocrystals and gold nanorods coated with fluorescent dye-doped silica shells. J Solid State Chem 181:1590–1599

    Article  CAS  Google Scholar 

  • Jana NR, Gearheart L, Obare SO, Murphy CJ (2002) Anisotopric chemical reactivity of gold spheroids and nanorods. Langmuir 18:922–927

    Article  CAS  Google Scholar 

  • Kahraman M, Yazici MM, Sahin F, Culha M (2007) Experimental parameters influencing surface-enhanced Raman scattering of bacteria J Biomed Opt 12(5):054015/1–054015/6

    Google Scholar 

  • Knauer M, Ivleva NP, Liu X, Niessner R, Haisch C (2010) Surface-enhanced raman scattering-based label-free microarray readout for the detection of microorganisms. Anal Chem 82:2766–2772

    Article  CAS  Google Scholar 

  • Li F, Zhang J, Cao X, Wang L, Li D, Song S, Ye B, Fan C (2009) Adenosine detection by using gold nanoparticles and designed aptamer sequences. Analyst 134:1355–1360

    Article  CAS  Google Scholar 

  • Lin J, Zhou W, Kumbhar A, Wiemann J, Fang J, Carpenter EE et al (2001) Gold-coated iron (Fe@Au) nanoparticles: synthesis, characterization, and magnetic fieled-induced self assembly. J Solid State Chem 159:26–31

    Article  CAS  Google Scholar 

  • Liu Y, Chao K, Nou X, Chen Y (2008) Feasibility of colloidal silver SERS for rapid bacterial screening. Sens & Instrumen Food Qual 3:100–107

    Article  Google Scholar 

  • Luo W, Van der V, Chu P, Mills DL, Penner RM, Hemminger JC (2008) Polarization-dependent surface enhanced Raman scattering from silver 1D nanoparticle arrays. J Phys Chem C 112:11609–11613

    Article  CAS  Google Scholar 

  • Lyon JL, Fleming DA, Stone MB, Schiffer P, Williams ME (2004) Synthesis of Fe oxide core/au shell nanoparticles by iterative hydroxylamine seeding. Nano Lett 4:719–723

    Article  CAS  Google Scholar 

  • Mandal M, Kundu S, Ghosh SK, Panigrahi S, Sau TK, Yusuf SM, Tarasankar P (2005) Magnetic nanoparticles with tunable gold or silver shell. J Colloid Interface Sci 286:187–194

    Article  CAS  Google Scholar 

  • Mikhaylova M, Kim DK, Bobrysheva N, Osmolowsky M, Semenov V, Tsakalatos T, Mamoun M (2004) Superparamagnetism of magnetic nanoparticles: depence on surface modification. Langmiur 20:2472–2477

    Article  CAS  Google Scholar 

  • Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382:607–609

    Article  CAS  Google Scholar 

  • Murphy CJ, Sau TK, Gole AM, Orendorff CJ, Gao J, Gou L, Hunyadi SE, Li T (2005) Anisotopric matel nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B 109:13857–13870

    Article  CAS  Google Scholar 

  • Narayanan R, Lipert RJ, Porter MD (2008) Cetyltrimethylammonium bromide-modifiedspherical and cube-like gold nanoparticles extrinsic Raman labels in surface-enhanced Raman spectroscopy based heterogeneous immunoassays. Anal Chem 80:2265–2271

    Article  CAS  Google Scholar 

  • Nikoobakht B, El-Sayed MA (2003a) Preparation and growth mechanism of gold nanorods (NRs) using seed- mediated growth method. Chem Mater 15:1957–1962

    Article  CAS  Google Scholar 

  • Nikoobakht B, El-Sayed MA (2003b) Surface-enhanced Raman scattering studies on aggregated gold nanorods. J Phys Chem A 107:3372–3378

    Article  CAS  Google Scholar 

  • Pal S, Morales M, Mukharjee P, Srikanth H. (2009) Synthesis and magnetic properties of gold coated iron oxide nanoparticles. J Appl Phys 105:07B50-4–07B504-3

    Google Scholar 

  • Premasiri WR, Moir DT, Klempner MS, Krieger N, Jones G, Ziegler LD (2005) Characterization of the surface enhanced Raman scattering (SERS) of bacteria. J Phys Chem B 109:312–320

    Article  CAS  Google Scholar 

  • Rosi NL, Mirkin CA (2005) Nanostructures in Biodiagnostics. Chem Rev 105:1547–1562

    Article  CAS  Google Scholar 

  • Schultz DA (2003) Plasmon resonant particles for biological detection. Curr Opin Biotechnol 14:13–22

    Article  CAS  Google Scholar 

  • Sengupta A, Mujacic M, Davis EJ (2006) Detection of bacteria by surface-enhanced Raman spectroscopy. Anal Bioanal Chem 386:1379–1386

    Google Scholar 

  • Spycher R, Stadelmann P, Bore JP (1991) Crystallographic structure of small gold nanoparticles studied by high resolution electron microscopy. Faraday Discuss 92:173–187

    Google Scholar 

  • Suziki M, Maekita W, Wada Y, Nagai K, Nakajima K, Kimura K, Fukuoka T, Mori Y (2008) Ag nanorod arrays tailored for surface-enhanced Raman imaging in the near-infrared region. Nanotechnology 19:265304–265310

    Article  Google Scholar 

  • Tamer U, Gündoğdu Y, Boyacı Hİ, Pekmez K (2010) Synthesis of magnetic core–shell Fe3O4–Au nanoparticle for biomolecule immobilization and detection. J Nanopart Res 12:1187–1196

    Article  CAS  Google Scholar 

  • Temur E, Boyaci IH, Tamer U, Unsal H, Aydogan N (2010) A highly sensitive detection platform based on surface-enhanced Raman scattering for E. coli enumeration. Anal Bioanal Chem 397:1595–1604

    Article  CAS  Google Scholar 

  • Tollan CM, Echeberria J, Marcilla R, Pomposo JA, Mecerreyes D (2009) One-step growth of gold nanorods using a b-diketone reducing agent. J Nanopart Res 11:1241–1245

    Article  CAS  Google Scholar 

  • Tornblom M, Henriksson U (1997) Effect of solubilization of aliphatic hydrocarbons on size and shape of rodlike C16TABr micelles studied by 2H NMR relaxation. J Phys Chem B 101:6028–6035

    Article  Google Scholar 

  • Wang LY, Luo J, Maye MM, Fan Q, Rendeng Q, Engelhard MH, Chongmin W, Yuehe L, Chuan JZ (2005a) Iron oxide–gold core–shell nanoparticles and thin film assembly. J Mater Chem 15:1821–1832

    Article  CAS  Google Scholar 

  • Wang LY, Luo J, Fan Q, Suzuki M, Suzuki IS, Engelhard MH, Lin YH, Kim N, Wang JQ, Zhong CJ (2005b) Monodispersed core shell Fe3O4@Au nanoparticles. J Phys Chem B 109:21593–21601

    Article  CAS  Google Scholar 

  • Wang C, Chen Y, Wang T, Ma Z, Su Z (2008a) Monodispersed gold nanorod-embedded silica particles as novel Raman labels for biosensing. Adv Funct Mater 18:355–361

    Article  CAS  Google Scholar 

  • Wang J, Li YF, Huang CZ (2008b) Identification of iodine-induced morphological transformation of gold nanorods. J Phys Chem C 112:11691–11695

    Article  CAS  Google Scholar 

  • Wang C, Chen J, Talavage T, Irudayaraj J (2009) Gold Nanorod/Fe3O4 nanoparticle “nano-pearl-necklaces” for simultaneous targeting, dual-mode imaging, and photothermal ablation of cancer cells. Angew Chem Int Ed 48:2759–2763

    Article  CAS  Google Scholar 

  • Wang YL, Lee K, Irudayaraj J (2010) SERS aptasensor from nanorod–nanoparticle junction for protein detection. Journal of Physical Chemistry C. 114:16122–16128

    Article  CAS  Google Scholar 

  • Yang H, Qu L, Wimbrow AN, Jiang X, Sun Y (2007) Rapid detection of listeria monocytogenes by nanoparticle- based immunomagnetic separation and real-time PCR. Int J Food Microbiol 118:132–138

    Article  CAS  Google Scholar 

  • Yu H, Chen M, Rice PM, Wang SX, White RL, Sun S (2005) Dumbbell-like bifunctional Au–Fe3O4 nanoparticles. Nano Lett 5:379–382

    Article  CAS  Google Scholar 

  • Yu C, Varghese L, Irudayaraj J (2007) Surface modification of cetyltrimethylammonium bromide-capped gold nanorods to make molecular probes. Langmuir 23:9114–9119

    Article  CAS  Google Scholar 

  • Yuan J, Chen Y, Han D, Zhang Y, Shen Y, Wang Z, Niu L (2006) Synthesis of highly faceted multiply twinned gold nanocrystals stabilized by polyoxometalates. Nanotechnology 17:4689–4694

    Article  CAS  Google Scholar 

  • Zeng H, Li J, Liu JP, Wang ZL, Sun S (2002) Exchange-coupled nanocomposite magnets by nanoparticle self- assembly. Nature 420:395–398

    Article  CAS  Google Scholar 

  • Zeng H, Li J, Wang ZL, Liu JP, Sun S (2004) Bimagnetic core/shell FePt/Fe3O4 nanoparticles. Nano Lett 4:187–190

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support provided by The Scientific and Technological Research Council of Turkey; Project Number: COST-MP091-108T794.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uğur Tamer.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tamer, U., Boyacı, İ.H., Temur, E. et al. Fabrication of magnetic gold nanorod particles for immunomagnetic separation and SERS application. J Nanopart Res 13, 3167–3176 (2011). https://doi.org/10.1007/s11051-010-0213-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-010-0213-y

Keywords

Navigation