Skip to main content
Log in

Determination of the anisotropy constant and saturation magnetization of magnetic nanoparticles from magnetization relaxation curves

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

We have developed a new method for the determination of the anisotropy constant and saturation magnetization of magnetic nanoparticles. This method deals with the approximation of magnetization relaxation curves measured upon application and further fast switching off the dc magnetizing field. The relaxation process is registered in the time interval from 6 μs to several minutes by using a scanning high-T C SQUID-microscope equipped with a specially designed electronic circuit composed of a fast solid-state switch and a low-inductance magnetizing coil. The algorithm for calculating the approximation data is based on the activation Néel–Arrhenius law and takes into account the size distribution of the nanoparticles and the angular distribution of their easy axes. The performance of the method is demonstrated on dilute (∼0.2 vol%) ensembles of near-spherical Fe3O4 nanoparticles with a mean size of 7.7 nm and a standard deviation of 45% as determined from transmission electron microscopy data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aharoni A (1996) Ferromagnetism. Oxford University Press, Oxford

    Google Scholar 

  • Bacri J, Perzynski R, Salin D, Cabuil V, Massart R (1990) Ionic ferrofluids: a crossing of chemistry and physics. J Magn Magn Mater 85:27–32

    Article  CAS  Google Scholar 

  • Brown W (1963) Thermal fluctuations of a single-domain particle. Phys Rev 130:1677–1686

    Article  Google Scholar 

  • Caizer C (2003) Saturation magnetization of γ-Fe2O3 nanoparticles dispersed in a silica matrix. Physica B 327:27–33

    Article  CAS  Google Scholar 

  • Cannas C, Concas C, Falqui A, Gatteschi D, Musinu A, Piccaluga G, Sangregorio C, Spano G (2001) Superparamagnetic behavior of γ-Fe2O3 nanoparticles dispersed in a silica matrix. Phys Chem Chem Phys 3:832–838

    Article  CAS  Google Scholar 

  • Chikazumi S (1964) Physics of magnetism. Wiley, New York

    Google Scholar 

  • Duarte EL, Itri R, Lima E, Baptista MS, Berquo TS, Goya GF (2006) Large magnetic anisotropy in ferrihydrite nanoparticles synthesized from reverse micelles. Nanotechnology 17:5549–5555

    Article  CAS  Google Scholar 

  • Fiorani D (ed) (2005) Surface effects in magnetic nanoparticles. Springer

  • Garcia-Otero J, Porto M, Rivas J, Bunde A (1999) Influence of the cubic anisotropy constants on the hysteresis loops of single-domain particles: a Monte Carlo study. J Appl Phys 85:2287–2292

    Article  CAS  Google Scholar 

  • Held GA, Grinstein G, Doyle H, Sun Sh, Murray C (2001) Competing interactions in dispersions of superparamagnetic nanoparticles. Phys Rev B 64:012408-1–012408-4

    Article  CAS  Google Scholar 

  • Jamet M, Wernsdorfer W, Thirion C, Mailly D, Dupuis V, Mélinon P, Pérez A (2001) Magnetic anisotropy of a single cobalt nanocluster. Phys Rev Lett 86:4676–4679

    Article  CAS  Google Scholar 

  • Kadau K, Gruner M, Entel P, Kreth M (2003) Modeling structural and magnetic phase transitions in iron-nickel nanoparticles. Phase Transit 76:355–365

    Article  CAS  Google Scholar 

  • Kodama R (1999) Magnetic nanoparticles. J Magn Magn Mater 200:359–372

    Article  CAS  Google Scholar 

  • Lin XM, Sorensen CM, Klabunde KJ, Hajipanayis GC (1999) Control of cobalt nanoparticle size by the germ-growth method in inverse micelle system: size-dependent magnetic properties. J Mater Res 14:1542–1547

    Article  CAS  Google Scholar 

  • Luis F, Petroff F, Torres JM, Garcia LM, Bartolome J, Carrey J, Vaures A (2002) Magnetic relaxation of interacting Co clusters: crossover from two- to three-dimensional lattices. Phys Rev Lett 88:217205-1–217205-4

    Google Scholar 

  • McCallum RW (2005) Determination of the saturation magnetization, anisotropy field, mean field interaction, and switching field distribution for nanocrystalline hard magnets. J Magn Magn Mater 292:135–142

    Article  CAS  Google Scholar 

  • Moser A, Takano K, Margulies DT, Albrecht M, Sonobe Y, Ikeda Y, Sun Sh, Fullerton EE (2002) Magnetic recording: advancing into the future. J Phys D: Appl Phys 35:R157–R167

    Article  CAS  Google Scholar 

  • Mørup S (1990) Mossbauer effect in small particles. Hyperfine Interactions 60:959–974

    Article  Google Scholar 

  • Muxworthy AR, McClelland E (2000) Review of the low-temperature magnetic properties of magnetite from a rock magnetic perspective. Geophys J Int 140:101–114

    Article  Google Scholar 

  • Néel L (1949) Théorie du trainage magnétique. Ann Geophys 5:99

    Google Scholar 

  • Néel L (1954) J Phys Radium 15:376

    Google Scholar 

  • Osborn JA (1945) Demagnetizing factors of the general ellipsoid. Phys Rev 67:351–357

    Article  Google Scholar 

  • Pankhurst QA, Binns C, Maher M, Kechrakos D, Trohidou K (2002) Magnetic behavior of nanostructured films assembled from preformed Fe clusters embedded in Ag. Phys Rev B 66:184413-1–184413-12

    Google Scholar 

  • Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Application of magnetic nanoparticles in biomedicine. J Phys D: Appl Phys 36:R167–R181

    Article  CAS  Google Scholar 

  • Poddar P, Telem-Shafir T, Fried T, Markovich G (2002) Dipolar interactions in two- and three-dimensional magnetic nanoparticle arrays. Phys Rev B 66:060403-1–060403-4

    Article  CAS  Google Scholar 

  • Si Sh, Li Ch, Wang X, Yu D, Peng Q, Li Y (2005) Magnetic monodisperse Fe3O4 nanoparticles. Cryst Growth Des 5:391–393

    Article  CAS  Google Scholar 

  • Song T, Roshko RM, Dahlberg E (2001) Modelling the irreversible response of magnetically ordered materials: a Preisach-based approach. J Phys: Condens Matter 13:3443–3460

    Article  CAS  Google Scholar 

  • Stoner E, Wohlfarth E (1991) A mechanism of magnetic hysteresis in heterogeneous alloys. IEEE Trans Magn 27:3475–3518 (reprinted from (1948) Philos Trans R Soc London A240:599–642).

    Google Scholar 

  • Suess D, Schrefl T, Fidler J (2001) Reversal modes, thermal stability and exchange length in perpendicular recording media. IEEE Trans Magn 37:1664–1666

    Article  CAS  Google Scholar 

  • Vargas JM, Socolovsky LM, Knobel M, Zanchet D (2005) Dipolar interactions and size effects in powder samples of colloidal iron oxide nanoparticles. Nanotechnology 16: S285–S290

    Article  CAS  Google Scholar 

  • Volkov I, Chukharkin M, Snigirev O, Ranchinski M (2003) YBCO submicron Josephson junctions on bicrystal substrates. IEEE Trans Appl Supercond 13:861–864

    Article  CAS  Google Scholar 

  • Volkov IA, Chukharkin ML, Snigirev OV, Volkov AV, Moskvina MA, Gudoshnikov SA, Kerimov AK (2005) HTS SQUID microscopy for measuring the magnetization relaxation of magnetic nanoparticles. IEEE Trans Appl Supercond 15:3874–3878

    Article  CAS  Google Scholar 

  • Vonsovsky SV (1974) Magnetism. Wiley, New York

    Google Scholar 

  • Weller D, Moser A (1999) Thermal effect limits in ultrahigh density magnetic recording. IEEE Trans Magn 35:4423–4439

    Article  CAS  Google Scholar 

  • Woods SI, Kirtley JR, Sun Sh, Koch RH (2001) Direct investigation of superparamagnetism in Co nanoparticle films. Phys Rev Lett 87:137205-1–137205-4

    Article  CAS  Google Scholar 

  • Zeng H, Li J, Liu JP, Wang ZL, Sun Sh (2002) Exchange-coupled nanocomposite magnets by nanoparticle self-assembly. Nature 420:395–398

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Foundation for Basic Research under the projects # 06-02-16776-a and # 07-02-91227-YaF_a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Volkov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Volkov, I., Chukharkin, M., Snigirev, O. et al. Determination of the anisotropy constant and saturation magnetization of magnetic nanoparticles from magnetization relaxation curves. J Nanopart Res 10, 487–497 (2008). https://doi.org/10.1007/s11051-007-9282-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-007-9282-y

Keywords

Navigation