Skip to main content
Log in

Targeted destruction of murine macrophage cells with bioconjugated gold nanorods

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Gold nanorods manifest a readily tunable longitudinal plasmon resonance with light and consequently have potential for use in photothermal therapeutics. Recent work by others has shown how gold nanoshells and rods can be used to target cancer cells, which can then be destroyed using relatively high power laser radiation (∼1×105 to 1×1010 W/m2). Here we extend this concept to demonstrate how gold nanorods can be modified to bind to target macrophage cells, and show that high intensity laser radiation is not necessary, with even 5×102 W/m2 being sufficient, provided that a total fluence of ∼30 J/cm2 is delivered. We used the murine cell line RAW 264.7 and the monoclonal antibody CD11b, raised against murine macrophages, as our model system and a 5 mW solid state diode laser as our energy source. Exposure of the cells labeled with gold nanorods to a laser fluence of 30 J/cm2 resulted in 81% cell death compared to only 0.9% in the control, non-labeled cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alves-Rosa F., C. Stanganelli, J. Cabrera, N. van Rooijen, M.S. Palermo, M.A. Isturiz, 2000. Treatment with liposome-encapsulated clodronate as a new strategic approach in the management of immune thrombocytopenic purpura in a mouse model. Blood. 96, 2834–2840

    CAS  Google Scholar 

  2. Behnke O., T. Ammitzboll, H. Jessen, M. Klokker, K. Nilausen, J. Tranum-Jensen, L. Olsson, 1986. Non-specific binding of protein-stabilized gold sols as a source of error in immunocytochemistry. Eur J Cell Biol. 41, 326–338

    CAS  Google Scholar 

  3. Bozkurt A., B. Onaral, 2004. Safety assessment of near infrared light emitting diodes for diffuse optical measurements. Biomed. Eng. Online. 3, 9

    Article  Google Scholar 

  4. Brewer S.H., W.R. Glomm, M.C. Johnson, M.K. Knag, S. Franzen, 2005. Probing BSA binding to citrate-coated gold nanoparticles and surfaces. Langmuir. 21, 9303–9307

    Article  CAS  Google Scholar 

  5. Caswell K.K., J.N. Wilson, U.H.F. Bunz, C.J. Murphy, 2003. Preferential end-to-end assembly of gold nanorods by biotin-streptavidin connectors. J. Am. Chem. Soc. 125, 13914–13915

    Article  CAS  Google Scholar 

  6. Chang J.-Y., Wu, H., Chen, H., Lingb, Y.-C., Tan, W., 2005. Oriented assembly of Au nanorods using biorecognition system. Chem. Comm. 1092–1094

  7. Chang S.-S., C.-W. Shih, C.-D. Chen, 1999. The shape transition of gold nanorods. Langmuir. 15, 701–709

    Article  CAS  Google Scholar 

  8. Chithrani B.D., A.A. Ghazani, W.C.W. Chan, 2006. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 6, 662–668

    Article  CAS  Google Scholar 

  9. Chou C.-H., C.-D. Chen, C.R.C. Wang, 2005. Highly efficient, wavelength-tunable, gold nanoparticle based photothermal nanoconvertors. J. Phys. Chem. B. 109, 11135–11138

    Article  CAS  Google Scholar 

  10. Connor E.E., J. Mwamuka, A. Gole, C.J. Murphy, M.D. Wyatt, 2005. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small. 1, 325–327

    Article  CAS  Google Scholar 

  11. Daniel M.-C., D. Astruc, 2004. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. . 104, 293–346

    Article  CAS  Google Scholar 

  12. Draine B.T., P.J. Flatau, 1994. Discrete-dipole approximation for scattering calculations. J. Opt. Soc. Am. A. 11, 1491–1499

    Google Scholar 

  13. Draine, B. T., Flatau, P. J., 2004. User Guide for the Discrete Dipole Approximation Code DDSCAT 6.1, http://arxiv.org/abs/astro-ph/0309069, accessed January 2005

  14. Dykman L.A., M.V. Sumaroka, S.A. Staroverov, I.S. Zaitseva, V.A. Bogatyrev, 2004. Immunogenic properties of colloidal gold. Biology Bull. 31, 75–79

    Article  CAS  Google Scholar 

  15. El-Sayed I.H., X. Huang, M.A. El-Sayed, 2005. Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer. Nano Lett. 5, 829–834

    Article  CAS  Google Scholar 

  16. El-Sayed I.H., X. Huang, M.A. El-Sayed, 2006. Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett. 239, 129–135

    Article  CAS  Google Scholar 

  17. Glomm W.R., 2005. Functionalized gold nanoparticles for applications in bionanotechnology. J. of Dispersion Sci. and Technol. 26, 389–414

    Article  CAS  Google Scholar 

  18. Goldenberg H., C.J. Tranter, 1952. Heat flow in an infinite medium heated by a sphere. Br. J. Appl. Phys. 3, 296–298

    Article  Google Scholar 

  19. Hainfeld J.F., D.N. Slatkin, H.M. Smilowitz, 2004. The use of gold nanoparticles to enhance radiotherapy in mice. Phys. Med. Biol. 49, N309–N315

    Article  CAS  Google Scholar 

  20. Harris N., M.J. Ford, M.B. Cortie, 2006. Optimization of plasmonic heating by gold nanospheres and nanoshells. J. Phys. Chem. B. 110, 10701–10707

    Article  CAS  Google Scholar 

  21. Hayat M.A., 1989. Colloidal Gold: Principles, Methods, and Applications. Academic Press, San Diego, CA

    Google Scholar 

  22. Hirsch L.R., R.J. Stafford, J.A. Bankson, S.R. Sershen, B. Rivera, R.E. Price, J.D. Hazle, N.J. Halas, J.L. West, 2003. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. USA. 100, 13549–13554

    Article  CAS  Google Scholar 

  23. Hu M., G.V. Hartland, 2002. Heat dissipation for Au particles in aqueous solution: Relaxation time versus size. J. Phys. Chem. B. 106, 7029–7033

    Article  CAS  Google Scholar 

  24. Huang X., I.H. El-Sayed, W. Qian, M.A. El-Sayed, 2006a. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 128, 2115–2120

    Article  CAS  Google Scholar 

  25. Huang X., P.K. Jain, I.H. El-Sayed, M.A. El-Sayed, 2006b. Determination of the minimum temperature required for selective photothermal destruction of cancer cells with the use of immunotargeted gold nanoparticles. Photochem. Photobiol. 82, 412–417

    Article  CAS  Google Scholar 

  26. Jana N.R., 2005. Gram-scale synthesis of soluble, near-monodisperse gold nanorods and other anisotropic nanoparticles. Small. 1, 875–882

    Article  CAS  Google Scholar 

  27. Johannessen J.V., 1973. Rapid processing of kidney biopsies for electron microscopy. Kidney International. 3, 46–52

    Article  CAS  Google Scholar 

  28. Kelly K.L., E. Coronado, L.L. Zhao, G.C. Schatz, 2003. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B. 107, 668–677

    Article  CAS  Google Scholar 

  29. Kurita H., A. Takami, S. Koda, 1998. Size reduction of gold particles in aqueous solution by pulsed laser irradiation. Appl. Phys. Lett. 72, 789–791

    Article  CAS  Google Scholar 

  30. Lepock J.R., 2003. Cellular effects of hyperthermia : relevance to the minimum dose for thermal damage. Int. J. Hyperthermia. 19, 252–266

    Article  CAS  Google Scholar 

  31. Liao H., J.H. Hafner, 2005. Gold nanorod bioconjugates. Chem. Mater. 17, 4636–4641

    Article  CAS  Google Scholar 

  32. Link S., C. Burda, B. Nikoobakht, M.A. El-Sayed, 2000. Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses. J. Phys. Chem. B. 104, 6152–6163

    Article  CAS  Google Scholar 

  33. Link S., M.A. El-Sayed, 1999. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B. 103, 8410–8426

    Article  CAS  Google Scholar 

  34. Link S., M.A. El-Sayed, 2000. Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Inter. Rev. Phys. Chem. 19, 409–453

    Article  CAS  Google Scholar 

  35. Link, S., El-Sayed, M. A., 2005. Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant (103B correction). J. Phys. Chem. B 109, 20, 10531

    Google Scholar 

  36. Loo C., A. Lin, L. Hirsch, M.H. Lee, J. Barton, N. Halas, J. West, R. Drezek, 2004. Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol. in Cancer Res., Treatment. 3, 33–40

    CAS  Google Scholar 

  37. Moghimi S.M., A.C. Hunter, J.C. Murray, 2005. Nanomedicine: Current status and future prospects. FASEB J. 19, 311–330

    Article  CAS  Google Scholar 

  38. Murphy C.J., T.K. Sau, A.M. Gole, C.J. Orendorff, J. Gao, L. Gou, S.E. Hunyadi, T. Li, 2005. Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J. Phys. Chem. B. 109, 13857–13870

    Article  CAS  Google Scholar 

  39. Nikoobakht B., M.A. El-Sayed, 2003. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 15, 1957–1962

    Article  CAS  Google Scholar 

  40. O’Neal D.P., L.R. Hirsch, N.J. Halas, J.D. Payne, J.L. West, 2004. Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett. 209, 171–176

    Article  CAS  Google Scholar 

  41. Perez-Juste J., I. Pastoriza-Santos, L.M. Liz-Marzan, P. Mulvaney, 2005. Gold nanorods: Synthesis, characterization and applications. Coordin. Chem. Rev. 249, 1870–1901

    Article  CAS  Google Scholar 

  42. Pernodet N., X. Fang, Y. Sun, A. Bakhtina, A. Ramakrishnan, J. Sokolov, A. Ulman, M. Rafailovich, 2006. Adverse effects of citrate/gold nanoparticles on human dermal fibroblasts. Small. 2, 766–773

    Article  CAS  Google Scholar 

  43. Pissuwan D., S. Valenzuela, M.B. Cortie, 2006. Therapeutic possibilities of plasmonically heated gold nanoparticles. Trends Biotechnol. 24, 62–67

    Article  CAS  Google Scholar 

  44. Pitsillides C.M., E.K. Joe, X. Wei, R.R. Anderson, C.P. Lin, 2003. Selective cell targeting with light-absorbing microparticles and nanoparticles. Biophys. J. 84, 4023–4032

    Article  CAS  Google Scholar 

  45. Pogue B.W., L. Lilge, M. Patterson, B. Wilson, T. Hasan, 1997. Absorbed photodynamic dose from pulsed versus continuous wave light examined with tissue-simulating dosimeters. Appl. Optics. 36, 7257–7269

    Article  CAS  Google Scholar 

  46. Prasad V., A. Mikhailovsky, J.A. Zasadzinski, 2005. Langmuir 21, 7528–7532

    Google Scholar 

  47. Pustovalov V.K., 2005. Theoretical study of heating of spherical nanoparticle in media by short laser pulses. Chem. Phys. 308, 103–108

    Article  CAS  Google Scholar 

  48. Raub C.B., E.J. Orwin, R. Haskell, 2004. Immunogold labeling to enhance contrast in optical coherence microscopy of tissue engineered corneal constructs. 26th Annual Conference of the Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society, San Francisco, CA

    Google Scholar 

  49. Salata, O., 2004. Applications of nanoparticles in biology and medicine. J. Nanobiotechnology 2, Paper 3

  50. Simpson C.R., M. Kohl, M. Essenpreis, M. Copey, 1998. Near-infrared optical properties of ex␣vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique. Phys. Med. Biol. 43, 2465–2478

    Article  CAS  Google Scholar 

  51. Skirtach A.G., C. Dejugnat, D. Braun, A.S. Susha, A.L. Rogach, W.J. Parak, H. Mohwald, G.B. Sukhorukov, 2005. The role of metal nanoparticles in remote release of encapsulated materials. Nano Lett. 5, 1371–1377

    Article  CAS  Google Scholar 

  52. Slot J.W., H.J. Geuze, 1985. A new method of preparing gold probes for multiple-labelling cytochemistry. Eur. J. Cell Biol. 38, 87–93

    CAS  Google Scholar 

  53. Takahashi, H., Niidome, Y., Yamada, S., 2005. Controlled release of plasmid DNA from gold nanorods induced by pulsed near-infrared light. Chem. Comm. 2247–2249

  54. Thomas K.G., S. Barazzouk, B.I. Ipe, S.T.S. Joseph, P.V. Kamat, 2004. Uniaxial plasmon coupling through longitudinal self-assembly of gold nanorods. J. Phys. Chem. B. 108, 13066–13068

    Article  CAS  Google Scholar 

  55. Vladimirov Y.A., A.N. Osipov, G.I. Klebanov, 2004. Photobiological principles of therapeutic applications of laser radiation. Biochemistry (Moscow) 69, 81–90

    Article  CAS  Google Scholar 

  56. Wang H., T.B. Huff, D.A. Zweifel, W. He, P.S. Low, A. Wei, J.-X. Cheng, 2005. In vitro and in␣vivo two-photon luminescence imaging of single gold nanorods. P. Natl. Acad. Sci. USA. 102, 15752–15756

    Article  CAS  Google Scholar 

  57. Weissleder R., 2001. A clearer vision for in␣vivo imaging. Nat. Biotechnol. 19, 316–317

    Article  CAS  Google Scholar 

  58. Xu X., M.B. Cortie, 2006. Shape change and color gamut in gold nanorods, dumbbells and dog-bones. Adv. Func. Mater. 16, 2170–2176

    Article  CAS  Google Scholar 

  59. Xu X., M. Stevens, M.B. Cortie, 2004. In situ precipitation of gold nanoparticles onto glass for potential architectural applications. Chem. Mater. 16, 2259–2266

    Article  CAS  Google Scholar 

  60. Yao C., R. Rahmanzadeh, E. Endl, Z. Zhang, J. Gerdes, G. Hüttmann, 2005. Elevation of plasma membrane permeability by laser irradiation of selectively bound nanoparticles. J. Biomed. Optics. 10, 064012

    Article  CAS  Google Scholar 

  61. Yu Y.-Y., S.-S. Chang, C.-L. Lee, C.R.C. Wang, 1997. Gold nanorods: Electrochemical synthesis and optical properties. J. Phys. Chem. B. 101, 6661–6664

    Article  CAS  Google Scholar 

  62. Zharov V.P., K.E. Mercer, E.N. Galitovskaya, M.S. Smeltzer, 2006. Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles. Biophys. J. 90, 619–627

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank R. Wuhrer, K. McBean and G.␣Stockton of the University of Technology Sydney for technical assistance received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael B. Cortie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pissuwan, D., Valenzuela, S.M., Killingsworth, M.C. et al. Targeted destruction of murine macrophage cells with bioconjugated gold nanorods. J Nanopart Res 9, 1109–1124 (2007). https://doi.org/10.1007/s11051-007-9212-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-007-9212-z

Keywords

Navigation