Skip to main content
Log in

Combining vibrational linear-by-part dynamics and kinetic-based decoupling of the dynamics for multiple smooth impacts with redundancy

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

This article proposes a simple linear-by-part approach for perfectly elastic 3D multiple-point impacts in multibody systems with perfect constraints and no friction, applicable both to nonredundant and redundant cases (where the normal velocities of the contact points are not independent). The approach is based on a vibrational dynamical model, and uses the so called “independent contact space.” Two different time and space scales are used. At the macroscale, the impact interval is negligible, and the overall system configuration is assumed to be constant. Consequently, the inertia and Jacobian matrices appearing in the formulation are also constant. The dynamics at the contact points is simulated through stiff springs undergoing very small deformations and generating system vibrations at the microscale. The total impact interval is split into phases, each corresponding to a constant set of compressed springs responsible for an elastic potential energy. For each phase, a reduced inertia matrix associated with a set of contact points, and a reduced stiffness matrix obtained from the potential energy (associated with all contact points undergoing compression) are introduced. From these matrices, a modal analysis is performed yielding an all-analytical solution within each phase. The main difference between the redundant and nonredundant cases concerns the inertia and stiffness matrices for modal analysis. While in the former case, both are related to the total set of contact points (total contact space), in the latter one they are related to two subsets: a subset of independent points for the inertia matrix (independent contact space), and the total set for the stiffness matrix. A second difference concerns the calculation of the normal impulses generated at each contact point. For the nonredundant case, they can be directly obtained from the total incremental normal velocities of the contact points through the inertia and stiffness matrices. For the redundant one, they can be obtained by adding up their incremental values at each impact phase. This requires an updating of a new effective stiffness matrix depending on the contact points undergoing compression at each phase. Four planar application cases are presented involving a single body and a multibody system colliding with a smooth ground.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Schiehlen, W., Seifried, R., Eberhard, P.: Elastoplastic phenomena in multibody impact dynamics. Comput. Methods Appl. Mech. Eng. 195, 6874–6890 (2006). doi:10.1016/j.cma.2005.08.011

    Article  MATH  MathSciNet  Google Scholar 

  2. Gilardi, G., Sharf, I.: Literature survey of contact dynamics modelling. Mech. Mach. Theory 37, 1213–1239 (2002). doi:10.1016/S0094-114X(02)00045-9

    Article  MATH  MathSciNet  Google Scholar 

  3. Agulló, J., Barjau, A.: Rough impacts in multibody systems. Mech. Mach. Theory 26(6), 565–577 (1991). doi:10.1016/0094-114X(91)90039-7

    Article  Google Scholar 

  4. Liu, C., Zhao, Z., Brogliato, B.: Frictionless multiple impacts in multibody systems. I. Theoretical framework. Proc. R. Soc. A, Math. Phys. Eng. Sci. 464, 3193–3211 (2008). doi:10.1098/rspa.2008.0078

    Article  MATH  MathSciNet  Google Scholar 

  5. Newby, N.D.: Linear impacts with harmonic oscillator forces: the inverse scattering forces. Am. J. Phys. 47(2), 161–165 (1979)

    Article  Google Scholar 

  6. Acary, V., Brogliato, B.: Concurrent multiple impacts modelling: case study of a 3-ball chain. In: Bathe, K.J. (ed.) Proc. MIT Conf. on Computational Fluid and Solid Mechanics, pp. 1836–1841. Elsevier Science, Amsterdam (2003)

    Google Scholar 

  7. Acary, V., Taha, D.E.: Concurrent multiple impacts in rigid bodies: formulation and simulation. In: Fifth Euromech Nonlinear Dynamics Conference, ENOC, Eindhoven University of Technology, Eindhoven, Pays-Bas. Springer, Berlin (2005)

    Google Scholar 

  8. Jia, Y.-B., Mason, M.T., Erdmann, M.A.: Multiple impacts: a state transition diagram approach. Int. J. Robot. Res. 32(1), 84–114 (2013). doi:10.1177/0278364912461539

    Article  Google Scholar 

  9. Yilmaz, C., Gharib, M., Hurmuzlu, Y.: Solving frictionless rocking block problem with multiple impacts. Proc. R. Soc. A 465, 3323–3339 (2009). doi:10.1098/rspa.2009.0273

    Article  MATH  MathSciNet  Google Scholar 

  10. Poisson, S.D.: Traité de Mécanique. Bachelier, Imprimeur, vol. 2. Librairie, Paris (1983)

    Google Scholar 

  11. Delunay, Ch.: Traité de Mécanique Rationelle. Livre IV: Dinamique, troisième partie. Langlois and Leclerq, Victor Masson, Paris (1856)

    Google Scholar 

  12. Résal, H.: Traité de Mecanique Générale. Tome VII: Développements sur la Mécanique Rationelle et la Cinématique Pure. Gautier-Villars, Paris (1889)

    Google Scholar 

  13. Boulanger, G.: Note sur le choc avec frottement des corps non parfaitement élastiques. Rev. Sci. 5, 325–327 (1939)

    Google Scholar 

  14. Brogliato, B.: Nonsmooth impact mechanics: models, dynamics and control. In: Lecture Notes in Control and Information Sciences, p. 220. Springer, Berlin (1996)

    Google Scholar 

  15. Stronge, W.J.: Impact Mechanics. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  16. Brogliato, B., Zhang, H., Liu, C.: Analysis of a generalized kinematic impact law for multibody-multicontact systems, with application to the planar rocking block and chains of balls. Multibody Syst. Dyn. 27, 351–382 (2012). doi:10.1007/s110044-012-9301-3

    Article  MATH  MathSciNet  Google Scholar 

  17. Batlle, J.A.: On Newton’s and Poisson’s rules of percussive dynamics. J. Appl. Mech. 60, 376–381 (1993). doi:10.1115/1.2900804

    Article  MATH  Google Scholar 

  18. Bowling, A., Flickinger, D.M., Harmeyer, S.: Energetically consistent simulation of simultaneous impacts and contacts in multibody systems with friction. Multibody Syst. Dyn. 22, 27–45 (2009). doi:10.1007/s511044-009-9147-5

    Article  MATH  MathSciNet  Google Scholar 

  19. Ruspini, D.C., Khatib, O.: Impact/contact models for the dynamic simulation of complex environments. In: Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (1997)

    Google Scholar 

  20. Mirtich, B., Canny, J.: Impulse-based simulation of rigid bodies. In: Proc. of the 1995 Symposium on Interactive 3D Graphics (1995). doi:10.1145/199404.199436

    Google Scholar 

  21. Glocker, C., Pfeiffer, F.: Multiple impacts with friction in rigid multibody systems. J. Nonlinear Dyn. 7, 471–497 (1995). doi:10.1007/BF00121109

    Article  MathSciNet  Google Scholar 

  22. Caselli, F., Frémond, M.: Impact of three balls on a plane. Comput. Mech. 43, 743–754 (2009). doi:10.1007/s00466-008-0342-7

    Article  MATH  MathSciNet  Google Scholar 

  23. Johansson, L.: A Newton method for rigid body frictional impact with multiple simultaneous impact points. Comput. Methods Appl. Mech. Eng. 191, 239–254 (2001). doi:10.1016/S0045-7825(01)00272-9

    Article  MATH  Google Scholar 

  24. Ruspini, D.C., Khatib, O.: A framework for multi-contact multi-body dynamic simulation and haptic display. In: Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, vol. 2, pp. 1322–1327 (2000). doi:10.1109/IROS.2000.893204

    Google Scholar 

  25. Moreau, J.J.: Some numerical methods in multibody dynamics: application to granular materials. Eur. J. Mech. A, Solids 13(4), 93–114 (1994)

    MATH  MathSciNet  Google Scholar 

  26. Kövecses, J.: Dynamics of mechanical systems and the generalized free-body diagram—part I: general formulation. J. Appl. Mech. 75, 061012 (2008). doi:10.1115/1.2965372

    Article  Google Scholar 

  27. Constantinescu, D., Salcudean, S.E., Croft, E.A.: Haptic rendering of rigid body impacts. In: Proc. 12th Int. Symposium HAPTICS’04, pp. 2–8 (2004). doi:10.1109/HAPTIC.2004.1287171

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Barjau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barjau, A., Batlle, J.A. & Font-Llagunes, J.M. Combining vibrational linear-by-part dynamics and kinetic-based decoupling of the dynamics for multiple smooth impacts with redundancy. Multibody Syst Dyn 31, 497–517 (2014). https://doi.org/10.1007/s11044-013-9398-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-013-9398-z

Keywords

Navigation