Skip to main content

Advertisement

Log in

Time dependent viscoelastic rheological response of pure, modified and synthetic bituminous binders

  • Original Article
  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

Bitumen is a viscoelastic material that exhibits both elastic and viscous components of response and displays both a temperature and time dependent relationship between applied stresses and resultant strains. In addition, as bitumen is responsible for the viscoelastic behaviour of all bituminous materials, it plays a dominant role in defining many of the aspects of asphalt road performance, such as strength and stiffness, permanent deformation and cracking. Although conventional bituminous materials perform satisfactorily in most highway pavement applications, there are situations that require the modification of the binder to enhance the properties of existing asphalt material. The best known form of modification is by means of polymer modification, traditionally used to improve the temperature and time susceptibility of bitumen. Tyre rubber modification is another form using recycled crumb tyre rubber to alter the properties of conventional bitumen. In addition, alternative binders (synthetic polymeric binders as well as renewable, environmental-friendly bio-binders) have entered the bitumen market over the last few years due to concerns over the continued availability of bitumen from current crudes and refinery processes. This paper provides a detailed rheological assessment, under both temperature and time regimes, of a range of conventional, modified and alternative binders in terms of the materials dynamic (oscillatory) viscoelastic response. The rheological results show the improved viscoelastic properties of polymer- and rubber-modified binders in terms of increased complex shear modulus and elastic response, particularly at high temperatures and low frequencies. The synthetic binders were found to demonstrate complex rheological behaviour relative to that seen for conventional bituminous binders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • AASHTO Designation: TP5, Standard method of test for determining the rheological properties of asphalt binder using a dynamic shear rheometer (DSR) (1994)

  • Airey, G.D., Brown, S.F.: Rheological performance of aged polymer modified bitumens. Assoc. Asph. Paving Technol. 67, 66–100 (1998)

    Google Scholar 

  • Airey, G.D.: Rheological evaluation of ethylene vinyl acetate polymer modified bitumens. Constr. Build. Mater. 16(8), 473–487 (2002a)

    Article  Google Scholar 

  • Airey, G.D.: Use of black diagrams to identify inconsistencies in rheological data. Road Mater, Pavement Des. 3(4), 403–424 (2002b)

    Article  Google Scholar 

  • Airey, G.D.: Rheological properties of styrene butadiene styrene polymer modified road bitumens. Fuel 82(14), 1709–1719 (2003)

    Article  Google Scholar 

  • Airey, G.D., Hunter, A.E.: Dynamic mechanical testing of bitumen—sample preparation methods. In: Proceedings of the ICE—Transport, 156(TR2), pp. 85–92 (2003)

    Google Scholar 

  • Airey, G.D., Mohammed, M.H.: Rheological properties of polyacrylates used as synthetic road binders. Rheol. Acta 47, 751–763 (2008)

    Article  Google Scholar 

  • Airey, G.D., Mohammed, M.H., Collop, A.C., Hayes, C., Parry, T.: Linear viscoelastic behaviour of polyacrylate binders and bitumen blends. Road Mater, Pavement Des. 9, 13–35 (2008a), Special issue

    Article  Google Scholar 

  • Airey, G.D., Mohammed, M.H., Fichter, C.: Rheological characteristics of synthetic road binders. Fuel 87, 1763–1775 (2008b)

    Article  Google Scholar 

  • Airey, G.D., Wilmot, J., Grenfell, J.R.A., Irvine, D.J., Barker, I.A., El Harfi, J.: Rheology of polyacrylate binders produced via catalytic chain transfer polymerization as an alternative to bitumen in road pavement materials. Eur. Polym. J. 47, 1300–1314 (2011)

    Article  Google Scholar 

  • Ahmad, N.M., Lovell, P.A., Underwood, S.M.: Viscoelastic properties of branched polyacrylate melts. Polym. Int. 50, 625–634 (2001)

    Article  Google Scholar 

  • Anderson, D.A., Christensen, D.W., Bahia, H.U., Dongre, R., Sharma, M.G., Antle, C.E., Button, J.: Binder Characterisation and Evaluation. Vol. 3: Physical Properties. National Research Council, Washington, D.C. (1994). SHRP-A-369

    Google Scholar 

  • ASTM: Standard test method for viscosity of asphalt with cone and plate viscometer. ASTM D 3205-77, Annual Book of ASTM Standards, 4.03, pp. 468–472 (1986)

  • Bardesi, A., et al.: Use of modified bituminous binders, special bitumens and bitumens with additives in pavement applications. Technical Committee Flexible Roads (C8), World Road Association (PIARC) (1999)

  • Barnes, H.A., Hutton, J.F., Walters, K.: An Introduction to Rheology. Elsevier, Amsterdam (1989)

    MATH  Google Scholar 

  • BS EN 1426: Bitumen and bituminous binders—determination of needle penetration. British Standards (2007a)

  • BS EN 1427: Bitumen and bituminous binders—Determination of the softening point—Ring and Ball method. British Standards (2007b)

  • Bull, A.L., Vonk, W.C.: Thermoplastic rubber/bitumen blends for roof and road. Shell Chemical Technical Manual TR 8, 15 (1984)

  • Cavaliere, M.G., Diani, E., Vitalini Sacconi, L.: Polymer modified bitumens for improved road application. In: Proceedings of the 5th Eurobitume Congress, Stockholm, pp. 138–142 (1993). 1A, 1.23

    Google Scholar 

  • Celauro, B., Celauro, C., Lo Presti, D., Bevilacqua, A.: Definition of a laboratory optimization protocol for road bitumen improved with recycled tire rubber. Constr. Build. Mater. 37, 562–572 (2012)

    Article  Google Scholar 

  • Chailleux, E., Audo, M., Bujoli, B., Queffelec, C., Legrand, J., Lepine, O.: Alternative binder from microalgae. Transportation Research Circular, Number E-C165. Papers from a Workshop, 7–14 (2012)

  • Daga, V.K., Wagner, N.J.: Linear viscoelastic master curves of neat and laponite-filled poly(ethylene oxide)–water solutions. Rheol. Acta 45, 813–824 (2006)

    Article  Google Scholar 

  • Delaporte, B., Di Benedetto, H., Chaverot, P., Gauthier, G.: Linear viscoelastic properties of bituminous materials; from binders to mastics. J. Assoc. Asph. Paving Technol. 76, 455–494 (2007)

    Google Scholar 

  • Dickinson, E.J., Witt, H.P.: The dynamic shear modulus of paving asphalts as a function of frequency. Trans. Soc. Rheol. 18, 591–605 (1974)

    Article  Google Scholar 

  • Diehl, C.F.: Ethylene–styrene interpolymers for bitumen modification. In: Proceedings of the 2nd Eurasphalt and Eurobitume Congress, Barcelona, vol. 2, pp. 93–102 (2000)

    Google Scholar 

  • Ferry, J.D.: Viscoelastic Properties of Polymers. Wiley, New York (1980)

    Google Scholar 

  • Fini, E.H., Kalberer, E.W., Shahbazi, G., Basti, M., You, Z., Ozer, H., Aurangzeb, Q.: Chemical characterization of biobinder from swine manure: sustainable modifier for asphalt binder. J. Mater. Civ. Eng. 23(11), 1506–1513 (2011)

    Article  Google Scholar 

  • Fini, E.H., Al-Qadi, I.J., Xiu, S., Mills-Beale, J., You, Z.: Partial replacement of asphalt binder with bio-binder: characterisation and modification. Int. J. Pavement Eng. 13(6), 515–522 (2012)

    Article  Google Scholar 

  • Gaw, W.J.: The measurement and prediction of asphalt stiffness at low and intermediate pavement service temperatures. Assoc. Asph. Paving Technol. 47, 457–494 (1978)

    Google Scholar 

  • Goodrich, J.L.: Asphalt and polymer modified asphalt properties related to the performance of asphaltic concrete mixes. Assoc. Asph. Paving Technol. 57, 116–175 (1988)

    Google Scholar 

  • Goodrich, J.L.: Asphaltic binder rheology, asphalt concrete rheology and asphalt concrete mix properties. Assoc. Asph. Paving Technol. 60, 80–120 (1991)

    Google Scholar 

  • Goos, D., Carre, D.: Rheological modelling of bituminous binders a global approach to road technologies. In: Proceedings of the Eurasphalt & Eurobitume Congress, Session 5: Binders—Functional Properties and Performance Testing (1996), E&E.5.111, Strasbourg

    Google Scholar 

  • Gridnev, A.A., Ittel, S.D.: Catalytic chain transfer in free-radical polymerizations. Chem. Rev. 101(12), 3611–3659 (2001)

    Article  Google Scholar 

  • Griffen, R.L., Miles, T.K., Penther, C.J., Simpson, W.C.: Sliding Plate Microviscometer for Rapid Measurements of Asphalt Viscosity in Absolute Units. ASTM Special Technical Publication, vol. 212, p. 36 (1956)

    Google Scholar 

  • Heitzman, M.: Design and construction of asphalt paving materials with Crumb Rubber Modifier. Transportation Research Record 1339, pp. 1–12 (1992)

  • Institute of Petroleum: Determination of the complex shear modulus and phase angle of bituminous binders—dynamic shear rheometer (DSR) (1999). Method, IP PM CM/99

  • Isacsson, U., Lu, X.: Testing and appraisal of polymer modified road bitumens—state of the art. Mater. Struct. 28, 139–159 (1995)

    Article  Google Scholar 

  • Kato, M., Kamigaito, M., Sawamoto, M., Higashimura, T.: Polymerization of methyl methacrylate with the carbon tetrachloride/dichlorotris- (triphenylphosphine) ruthenium(II)/methylaluminum bis(2,6-di-tert-butylphenoxide) initiating system: possibility of living radical polymerization. Macromolecules 28(5), 1721–1723 (1995)

    Article  Google Scholar 

  • Kriz, P., Stastna, J., Zanzotto, L.: Glass transition and phase stability in asphalt binders. Road Mater, Pavement Des. 9, 37–65 (2008)

    Article  Google Scholar 

  • Lesueur, D., Gerard, J.F., Claudy, P., Letoffe, J.M., Planche, J.P., Martin, D.: A structure-related model to describe bitumen linear viscoelasticity. J. Rheol. 40, 813–836 (1996)

    Article  Google Scholar 

  • Lesueur, D.: On the thermorheological complexity and relaxation modes of asphalt cements. J. Rheol. 43, 1701–1704 (1999)

    Article  Google Scholar 

  • Lo Presti, D., Airey, G.D., Partal, P.: Manufacturing terminal and field bitumen-tyre rubber blends: the importance of processing conditions. Proc., Soc. Behav. Sci. 53, 485–494 (2012)

    Article  Google Scholar 

  • Lo Presti, D.: Recycled tyre rubber modified bitumens for road asphalt mixtures: a literature review. Constr. Build. Mater. 49, 863–881 (2013)

    Article  Google Scholar 

  • Lo Presti, D., Airey, G.D.: Tyre rubber–modified bitumens development: the effect of varying processing conditions. Road Mater, Pavement Des. 14(4), 888–900 (2013)

    Article  Google Scholar 

  • Loeber, L., Durand, A., Muller, G., Morel, J., Sutton, O., Bargiacchi, M.: New investigations on the mechanism of polymer–bitumen interaction and their practical application for binder formulation. In: Proceedings of the Eurasphalt & Eurobitume Congress, Session 5: Binders—Functional Properties and Performance Testing (1996), E&E.5.115, Strasbourg

    Google Scholar 

  • McKee, M.G., Unal, S., Wilkes, G.L., Long, T.E.: Branched polyesters: recent advances in synthesis and performance. Prog. Polym. Sci. 30, 507–539 (2005)

    Article  Google Scholar 

  • Md. Yusoff, N.Y., Shaw, M.T., Airey, G.D.: Modelling the linear viscoelastic rheological properties of bituminous binders. Constr. Build. Mater. 25, 2171–2189 (2011)

    Article  Google Scholar 

  • Md. Yusoff, N.I., Mounier, D., Ginoux, M.S., Hainin, M.R., Airey, G.D., Di Benedetto, H.: Modelling the rheological properties of bituminous binders using the 2S2P1D model. Constr. Build. Mater. 38, 395–406 (2013)

    Article  Google Scholar 

  • Mezger, T.G.: The Rheology Handbook: For Rotational and Oscillatory Rheometers. Vincentz Network, Hannover (2002)

    Google Scholar 

  • Monismith, C.L., Alexander, R.L., Secor, K.E.: Rheological behaviour of asphalt concrete. Assoc. Asph. Paving Technol. 35, 400–450 (1966)

    Google Scholar 

  • Olard, F., Di Benedetto, H.: General “2S2P1D” model and relation between the linear viscoelastic behaviours of bituminous binders and mixes. Road Mater Pavement 4, 185–224 (2003)

    Google Scholar 

  • Olard, F., Di Benedetto, H., Eckmann, B., Triquigneaux, J.P.: Linear viscoelastic properties of bituminous binders and mixtures at low and intermediate temperatures. Road Mater Pavement 4, 77–107 (2003)

    Article  Google Scholar 

  • Pellinen, T.K., Zofka, A., Marasteanu, M., Funk, N.: The use of asphalt mixture stiffness predictive models. J. Assoc. Asph. Paving Technol. 76, 575–626 (2007)

    Google Scholar 

  • Peralta, J., Williams, R.C., Rover, M., Silva, H.M.R.D.: Development of rubber-modified fractionated bio-oil for use as noncrude petroleum binder in flexible pavements. Transportation Research Circular, Number E-C165. Papers from a Workshop, pp. 23–36 (2012)

  • Petersen, J.C., Robertson, R.E., Branthaver, J.F., Harnsberger, P.M., Duvall, J.J., Kim, S.S., Anderson, D.A., Christensen, D.W., Bahia, H.U., Dongre, R., Sharma, M.G., Antle, C.E., Button, J., Glover, C.J.: Binder Characterisation and Evaluation, vol. 4. National Research Council, Washington, D.C. (1994). Test Methods, SHRP-A-370

    Google Scholar 

  • Pink, H.S., Merz, R.E., Bosniack, D.S.: Asphalt rheology: experimental determination of dynamic moduli at low temperatures. Assoc. Asph. Paving Technol. 49, 64–94 (1980)

    Google Scholar 

  • Planche, J.P., Lesueur, D., Hines, M.L., King, G.N.: Evaluation of elastomer modified bitumens using SHTP binder specifications. Eurasphalt & Eurobitume Congress E&E.5.121, Strasbourg (1996)

  • Raouf, M.A., Williams, C.R.: General rheological properties of fractionated switchgrass bio-oil as a pavement material. Road Mater, Pavement Des. 11, 325–353 (2010)

    Article  Google Scholar 

  • Schweyer, H.E., Smith, L.L., Fish, G.W.: A constant stress rheometer for asphalt cements. Assoc. Asph. Paving Technol. 45, 53–72 (1976)

    Google Scholar 

  • Soenen, H., De Visscher, J., Vanelstraete, A., Redelius, P.: Influence of thermal history on rheological properties of various bitumen. Rheol. Acta 45, 729–739 (2006)

    Article  Google Scholar 

  • Subhy, A., Lo Presti, D., Airey, G.D.: An investigation on using pre-treated tyre rubber as a replacement of synthetic polymers for bitumen modification. Road Mater, Pavement Des. 16, 245–264 (2015), Issue Supplement 1: EATA

    Article  Google Scholar 

  • Van der Poel, C.: A general system describing the visco-elastic properties of bitumen and its relation to routine test data. J. Appl. Chem. 4, 221–236 (1954)

    Article  Google Scholar 

  • Wang, H., You, Z., Mills-Beale, J., Hao, P.: Laboratory evaluation on high temperature viscosity and low temperature stiffness of asphalt binder with high percent scrap tire rubber. Constr. Build. Mater. 26(1), 583–590 (2012)

    Article  Google Scholar 

  • Wang, J.S., Matyjaszewski, K.: Controlled/“living” radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes. J. Am. Chem. Soc. 117(20), 5614–5615 (1995)

    Article  Google Scholar 

  • Wen, H., Bhusal, S., Wen, B.: Laboratory evaluation of waste cooking oil-based bioasphalt as sustainable binder for hot-mix Asphalt. Transportation Research Circular, Number E-C165. Papers from a Workshop, pp. 49–60 (2012)

  • Williams, M.L., Landel, R.F., Ferry, J.D.: The temperature-dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J. Am. Chem. Soc. 77(14), 3701–3707 (1955)

    Article  Google Scholar 

  • Whiteoak, C.D.: The Shell Bitumen Handbook. Shell Bitumen, Surrey (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. D. Airey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Airey, G.D., Grenfell, J.R.A., Apeagyei, A. et al. Time dependent viscoelastic rheological response of pure, modified and synthetic bituminous binders. Mech Time-Depend Mater 20, 455–480 (2016). https://doi.org/10.1007/s11043-016-9295-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-016-9295-y

Keywords

Navigation