Skip to main content
Log in

NF45 overexpression is associated with poor prognosis and enhanced cell proliferation of pancreatic ductal adenocarcinoma

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

NF45, also referred to as nuclear factor of activated T cells, has been reported to promote the progression of multiple cancer types. However, the expression and physiological significance of NF45 in pancreatic ductal adenocarcinoma (PDAC) remain largely elusive. In this study, we investigated the clinical relevance and potential role of NF45 expression in PDAC development. Western blot analysis revealed that NF45 was remarkably upregulated in PDAC tissues, compared with the adjacent non-tumorous ones. In addition, the expression of NF45 in 122 patients with PDAC was evaluated using immunohistochemistry. In this way, we found that NF45 was abundantly expressed in PDAC tissues, and the expression of NF45 was correlated with tumor size (p = 0.007), histological differentiation (p = 0.033), and TNM stage (p = 0.001). Importantly, patients with low levels of NF45 expression exhibited better postoperative prognosis as compared with those with high NF45 expression. Furthermore, using PDAC cell cultures, we found that interference of NF45 expression using siRNA oligos suppressed PDAC cell proliferation and retarded cell cycle progression. Moreover, depletion of NF45 impaired the levels of cellular cyclin E and proliferating cell nuclear antigen (PCNA). Conversely, overexpression of NF45 facilitated the cell growth and accelerated cell cycle progression. Our results establish NF45 as an important indicator of PDAC prognosis with potential utility as a therapeutic target in this lethal disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ryan DP, Hong TS, Bardeesy N (2014) Pancreatic adenocarcinoma. N Engl J Med 371:1039–1049. doi:10.1056/NEJMra1404198

    Article  CAS  PubMed  Google Scholar 

  2. Schneider G, Siveke JT, Eckel F, Schmid RM (2005) Pancreatic cancer: basic and clinical aspects. Gastroenterology 128:1606–1625

    Article  CAS  PubMed  Google Scholar 

  3. Collisson EA, Sadanandam A, Olson P, Gibb WJ, Truitt M, Gu S, Cooc J, Weinkle J, Kim GE, Jakkula L, Feiler HS, Ko AH, Olshen AB, Danenberg KL, Tempero MA, Spellman PT, Hanahan D, Gray JW (2011) Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy. Nat Med 17:500–503. doi:10.1038/nm.2344

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Edlund H (2002) Pancreatic organogenesis—developmental mechanisms and implications for therapy. Nat Rev Genet 3:524–532. doi:10.1038/nrg841

    Article  CAS  PubMed  Google Scholar 

  5. Kao PN, Chen L, Brock G, Ng J, Kenny J, Smith AJ, Corthesy B (1994) Cloning and expression of cyclosporin A- and FK506-sensitive nuclear factor of activated T-cells: NF45 and NF90. J Biol Chem 269:20691–20699

    CAS  PubMed  Google Scholar 

  6. Reichman TW, Muniz LC, Mathews MB (2002) The RNA binding protein nuclear factor 90 functions as both a positive and negative regulator of gene expression in mammalian cells. Mol Cell Biol 22:343–356. doi:10.1128/mcb.22.1.343-356.2002

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Zhao G, Shi L, Qiu D, Hu H, Kao PN (2005) NF45/ILF2 tissue expression, promoter analysis, and interleukin-2 transactivating function. Exp Cell Res 305:312–323. doi:10.1016/j.yexcr.2004.12.030

    Article  CAS  PubMed  Google Scholar 

  8. Sakamoto S, Aoki K, Higuchi T, Todaka H, Morisawa K, Tamaki N, Hatano E, Fukushima A, Taniguchi T, Agata Y (2009) The NF90–NF45 complex functions as a negative regulator in the microRNA processing pathway. Mol Cell Biol 29:3754–3769. doi:10.1128/MCB.01836-08

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Stricker RL, Behrens SE, Mundt E (2010) Nuclear factor NF45 interacts with viral proteins of infectious bursal disease virus and inhibits viral replication. J Virol 84:10592–10605. doi:10.1128/JVI.02506-09

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Isken O, Baroth M, Grassmann CW, Weinlich S, Ostareck DH, Ostareck-Lederer A, Behrens SE (2007) Nuclear factors are involved in hepatitis C virus RNA replication. RNA 13:1675–1692. doi:10.1261/rna.594207

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Huang Q, He X, Qiu X, Liu X, Sun G, Guo J, Ding Z, Yang L, Ban N, Tao T, Wang D (2014) Expression of NF45 correlates with malignant grade in gliomas and plays a pivotal role in tumor growth. Tumour Biol 35:10149–10157. doi:10.1007/s13277-014-2310-5

    Article  CAS  PubMed  Google Scholar 

  12. Shamanna RA, Hoque M, Pe’ery T, Mathews MB (2012) Induction of p53, p21 and apoptosis by silencing the NF90/NF45 complex in human papilloma virus-transformed cervical carcinoma cells. Oncogene 32:5176–5185. doi:10.1038/onc.2012.533

    Article  PubMed Central  PubMed  Google Scholar 

  13. Ni S, Zhu J, Zhang J, Zhang S, Li M, Ni R, Liu J, Qiu H, Chen W, Wang H, Guo W (2014) Expression and clinical role of NF45 as a novel cell cycle protein in esophageal squamous cell carcinoma (ESCC). Tumor Biol. doi:10.1007/s13277-014-2683-5

    Google Scholar 

  14. Graber TE, Baird SD, Kao PN, Mathews MB, Holcik M (2010) NF45 functions as an IRES trans-acting factor that is required for translation of cIAP1 during the unfolded protein response. Cell Death Differ 17:719–729. doi:10.1038/cdd.2009.164

    Article  CAS  PubMed  Google Scholar 

  15. Faye MD, Graber TE, Liu P, Thakor N, Baird SD, Durie D, Holcik M (2013) Nucleotide composition of cellular internal ribosome entry sites defines dependence on NF45 and predicts a posttranscriptional mitotic regulon. Mol Cell Biol 33:307–318. doi:10.1128/MCB.00546-12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Haselmann V, Kurz A, Bertsch U, Hubner S, Olempska-Muller M, Fritsch J, Hasler R, Pickl A, Fritsche H, Annewanter F, Engler C, Fleig B, Bernt A, Roder C, Schmidt H, Gelhaus C, Hauser C, Egberts JH, Heneweer C, Rohde AM, Boger C, Knippschild U, Rocken C, Adam D, Walczak H, Schutze S, Janssen O, Wulczyn FG, Wajant H, Kalthoff H, Trauzold A (2014) Nuclear death receptor TRAIL-R2 inhibits maturation of let-7 and promotes proliferation of pancreatic and other tumor cells. Gastroenterology 146:278–290. doi:10.1053/j.gastro.2013.10.009

    Article  CAS  PubMed  Google Scholar 

  17. Wolfgang CL, Herman JM, Laheru DA, Klein AP, Erdek MA, Fishman EK, Hruban RH (2013) Recent progress in pancreatic cancer. CA Cancer J Clin 63:318–348. doi:10.3322/caac.21190

    Article  PubMed Central  PubMed  Google Scholar 

  18. Costello E, Greenhalf W, Neoptolemos JP (2012) New biomarkers and targets in pancreatic cancer and their application to treatment. Nat Rev Gastroenterol Hepatol 9:435–444. doi:10.1038/nrgastro.2012.119

    Article  CAS  PubMed  Google Scholar 

  19. Kern SE, Shi C, Hruban RH (2011) The complexity of pancreatic ductal cancers and multidimensional strategies for therapeutic targeting. J Pathol 223:295–306. doi:10.1002/path.2813

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Guan D, Altan-Bonnet N, Parrott AM, Arrigo CJ, Li Q, Khaleduzzaman M, Li H, Lee CG, Pe’ery T, Mathews MB (2008) Nuclear factor 45 (NF45) is a regulatory subunit of complexes with NF90/110 involved in mitotic control. Mol Cell Biol 28:4629–4641. doi:10.1128/MCB.00120-08

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Iacobuzio-Donahue CA, Maitra A, Olsen M, Lowe AW, van Heek NT, Rosty C, Walter K, Sato N, Parker A, Ashfaq R, Jaffee E, Ryu B, Jones J, Eshleman JR, Yeo CJ, Cameron JL, Kern SE, Hruban RH, Brown PO, Goggins M (2003) Exploration of global gene expression patterns in pancreatic adenocarcinoma using cDNA microarrays. Am J Pathol 162:1151–1162. doi:10.1016/S0002-9440(10)63911-9

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Cartier J, Berthelet J, Marivin A, Gemble S, Edmond V, Plenchette S, Lagrange B, Hammann A, Dupoux A, Delva L, Eymin B, Solary E, Dubrez L (2011) Cellular inhibitor of apoptosis protein-1 (cIAP1) can regulate E2F1 transcription factor-mediated control of cyclin transcription. J Biol Chem 286:26406–26417. doi:10.1074/jbc.M110.191239

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Bharadwaj U, Li M, Chen C, Yao Q (2008) Mesothelin-induced pancreatic cancer cell proliferation involves alteration of cyclin E via activation of signal transducer and activator of transcription protein 3. Mol Cancer Res 6:1755–1765. doi:10.1158/1541-7786.MCR-08-0095

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Skalicky DA, Kench JG, Segara D, Coleman MJ, Sutherland RL, Henshall SM, Musgrove EA, Biankin AV (2006) Cyclin E expression and outcome in pancreatic ductal adenocarcinoma. Cancer Epidemiol Biomark Prev 15:1941–1947. doi:10.1158/1055-9965.EPI-06-0319

    Article  CAS  Google Scholar 

  25. Reichman TW, Parrott AM, Fierro-Monti I, Caron DJ, Kao PN, Lee CG, Li H, Mathews MB (2003) Selective regulation of gene expression by nuclear factor 110, a member of the NF90 family of double-stranded RNA-binding proteins. J Mol Biol 332:85–98

    Article  CAS  PubMed  Google Scholar 

  26. Kuwano Y, Pullmann R Jr, Marasa BS, Abdelmohsen K, Lee EK, Yang X, Martindale JL, Zhan M, Gorospe M (2010) NF90 selectively represses the translation of target mRNAs bearing an AU-rich signature motif. Nucleic Acids Res 38:225–238. doi:10.1093/nar/gkp861

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Kenneth NS, Duckett CS (2012) IAP proteins: regulators of cell migration and development. Curr Opin Cell Biol 24:871–875. doi:10.1016/j.ceb.2012.11.004

    Article  CAS  PubMed  Google Scholar 

  28. Vogler M, Durr K, Jovanovic M, Debatin KM, Fulda S (2007) Regulation of TRAIL-induced apoptosis by XIAP in pancreatic carcinoma cells. Oncogene 26:248–257. doi:10.1038/sj.onc.1209776

    Article  CAS  PubMed  Google Scholar 

  29. Vogler M, Walczak H, Stadel D, Haas TL, Genze F, Jovanovic M, Bhanot U, Hasel C, Moller P, Gschwend JE, Simmet T, Debatin KM, Fulda S (2009) Small molecule XIAP inhibitors enhance TRAIL-induced apoptosis and antitumor activity in preclinical models of pancreatic carcinoma. Cancer Res 69:2425–2434. doi:10.1158/0008-5472.CAN-08-2436

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Martin Holcik of University of Ottawa for kindly offering us the pcDNA3-Flag-NF45 construct. This work was supported by the National Natural Scientific Foundation of China (No. 81072028) and Jiangsu Province’s Outstanding Medical Academic Leader program (No. LJ101135).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guoxiong Zhou or Yixin Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Chunhua Wan and Chen Gong have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 1160 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, C., Gong, C., Ji, L. et al. NF45 overexpression is associated with poor prognosis and enhanced cell proliferation of pancreatic ductal adenocarcinoma. Mol Cell Biochem 410, 25–35 (2015). https://doi.org/10.1007/s11010-015-2535-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2535-7

Keywords

Navigation