Skip to main content

Advertisement

Log in

Regulation of stem cells-related signaling pathways in response to doxorubicin treatment in Hs578T triple-negative breast cancer cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Different molecular changes have been previously associated with therapeutic response and recurrent disease, however, the detailed mechanism of action in triple-negative breast cancer subtype remains elusive. In this study, we investigated the cellular and molecular signaling of two claudin-low triple-negative breast cancer cells to doxorubicin and docetaxel treatment. Whole human transcriptomic evaluation was used to identify the subsequent changes in gene expression, while biological effects were measured by means of proliferation and anchorage-independent growth assays. Microarray analysis revealed changes in stem cell-related signaling pathways, suggesting that doxorubicin treatment affects the balance between self-renewal and differentiation. While the treatment reduced the proliferation, aggregation and mammosphere forming ability of stem-like cells derived from Hs578T cell line, stem-like cells derived from MDA-MB-231 cells were not significantly affected. Our results suggest that claudin-low triple-negative breast cancer cells might predominantly alter stem cell-related signaling pathways to promote stem-like cells activity as an innate resistance mechanism to doxorubicin treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Creighton CJ, Li X, Landis M, Dixon JM, Neumeister VM, Sjolund A, Rimm DL, Wong H, Rodriguez A, Herschkowitz JI, Fan C, Zhang X, He X, Pavlick A, Gutierrez MC, Renshaw L, Larionov AA, Faratian D, Hilsenbeck SG, Perou CM, Lewis MT, Rosen JM, Chang JC (2009) Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc Natl Acad Sci USA 106(33):13820–13825. doi:10.1073/pnas.0905718106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. von Minckwitz G, Martin M (2012) Neoadjuvant treatments for triple-negative breast cancer (TNBC). Ann Oncol 23(Suppl 6):vi35-39. doi:10.1093/annonc/mds193

    Google Scholar 

  3. Cameron D, Brown J, Dent R, Jackisch C, Mackey J, Pivot X, Steger GG, Suter TM, Toi M, Parmar M, Laeufle R, Im YH, Romieu G, Harvey V, Lipatov O, Pienkowski T, Cottu P, Chan A, Im SA, Hall PS, Bubuteishvili-Pacaud L, Henschel V, Deurloo RJ, Pallaud C, Bell R (2013) Adjuvant bevacizumab-containing therapy in triple-negative breast cancer (BEATRICE): primary results of a randomised, phase 3 trial. Lancet Oncol 14(10):933–942. doi:10.1016/S1470-2045(13)70335-8

    Article  CAS  PubMed  Google Scholar 

  4. Martin M, Pienkowski T, Mackey J, Pawlicki M, Guastalla JP, Weaver C, Tomiak E, Al-Tweigeri T, Chap L, Juhos E, Guevin R, Howell A, Fornander T, Hainsworth J, Coleman R, Vinholes J, Modiano M, Pinter T, Tang SC, Colwell B, Prady C, Provencher L, Walde D, Rodriguez-Lescure A, Hugh J, Loret C, Rupin M, Blitz S, Jacobs P, Murawsky M, Riva A, Vogel C, Breast Cancer International Research Group I (2005) Adjuvant docetaxel for node-positive breast cancer. N Engl J Med 352(22):2302–2313. doi:10.1056/NEJMoa043681

    Article  CAS  PubMed  Google Scholar 

  5. Hugh J, Hanson J, Cheang MC, Nielsen TO, Perou CM, Dumontet C, Reed J, Krajewska M, Treilleux I, Rupin M, Magherini E, Mackey J, Martin M, Vogel C (2009) Breast cancer subtypes and response to docetaxel in node-positive breast cancer: use of an immunohistochemical definition in the BCIRG 001 trial. J Clin Oncol 27(8):1168–1176. doi:10.1200/JCO.2008.18.1024

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Minami CA, Chung DU, Chang HR (2011) Management options in triple-negative breast cancer. Breast Cancer 5:175–199. doi:10.4137/BCBCR.S6562

    PubMed Central  PubMed  Google Scholar 

  7. Carey LA, Dees EC, Sawyer L, Gatti L, Moore DT, Collichio F, Ollila DW, Sartor CI, Graham ML, Perou CM (2007) The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin Cancer Res 13(8):2329–2334. doi:10.1158/1078-0432.CCR-06-1109

    Article  CAS  PubMed  Google Scholar 

  8. Osborne CK, Schiff R (2011) Mechanisms of endocrine resistance in breast cancer. Annu Rev Med 62:233–247. doi:10.1146/annurev-med-070909-182917

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Musgrove EA, Sutherland RL (2009) Biological determinants of endocrine resistance in breast cancer. Nat Rev Cancer 9(9):631–643. doi:10.1038/nrc2713

    Article  CAS  PubMed  Google Scholar 

  10. Moitra K, Lou H, Dean M (2011) Multidrug efflux pumps and cancer stem cells: insights into multidrug resistance and therapeutic development. Clin Pharmacol Ther 89(4):491–502. doi:10.1038/clpt.2011.14

    Article  CAS  PubMed  Google Scholar 

  11. Liu S, Wicha MS (2010) Targeting breast cancer stem cells. J Clin Oncol 28(25):4006–4012. doi:10.1200/JCO.2009.27.5388

    Article  CAS  PubMed  Google Scholar 

  12. Ablett MP, Singh JK, Clarke RB (2012) Stem cells in breast tumours: are they ready for the clinic? Eur J Cancer 48(14):2104–2116. doi:10.1016/j.ejca.2012.03.019

    Article  CAS  PubMed  Google Scholar 

  13. Charafe-Jauffret E, Monville F, Ginestier C, Dontu G, Birnbaum D, Wicha MS (2008) Cancer stem cells in breast: current opinion and future challenges. Pathobiology 75(2):75–84. doi:10.1159/000123845

    Article  PubMed Central  PubMed  Google Scholar 

  14. Bauerschmitz GJ, Ranki T, Kangasniemi L, Ribacka C, Eriksson M, Porten M, Herrmann I, Ristimaki A, Virkkunen P, Tarkkanen M, Hakkarainen T, Kanerva A, Rein D, Pesonen S, Hemminki A (2008) Tissue-specific promoters active in CD44+CD24-/low breast cancer cells. Cancer Res 68(14):5533–5539. doi:10.1158/0008-5472.CAN-07-5288

    Article  CAS  PubMed  Google Scholar 

  15. Abraham BK, Fritz P, McClellan M, Hauptvogel P, Athelogou M, Brauch H (2005) Prevalence of CD44+/CD24-/low cells in breast cancer may not be associated with clinical outcome but may favor distant metastasis. Clin Cancer Res 11(3):1154–1159

    CAS  PubMed  Google Scholar 

  16. Snyder EL, Bailey D, Shipitsin M, Polyak K, Loda M (2009) Identification of CD44v6(+)/CD24- breast carcinoma cells in primary human tumors by quantum dot-conjugated antibodies. Lab Invest 89(8):857–866. doi:10.1038/labinvest.2009.54

    Article  CAS  PubMed  Google Scholar 

  17. Chavez KJ, Garimella SV, Lipkowitz S (2010) Triple negative breast cancer cell lines: one tool in the search for better treatment of triple negative breast cancer. Breast Dis 32(1–2):35–48. doi:10.3233/BD-2010-0307

    PubMed Central  PubMed  Google Scholar 

  18. Smalley M, Piggott L, Clarkson R (2013) Breast cancer stem cells: obstacles to therapy. Cancer Lett 338(1):57–62. doi:10.1016/j.canlet.2012.04.023

    Article  CAS  PubMed  Google Scholar 

  19. Lovitt CJ, Shelper TB, Avery VM (2014) Advanced cell culture techniques for cancer drug discovery. Biology 3(2):345–367. doi:10.3390/biology3020345

    Article  PubMed Central  PubMed  Google Scholar 

  20. Shaw FL, Harrison H, Spence K, Ablett MP, Simoes BM, Farnie G, Clarke RB (2012) A detailed mammosphere assay protocol for the quantification of breast stem cell activity. J Mammary Gland Biol Neoplasia 17(2):111–117. doi:10.1007/s10911-012-9255-3

    Article  PubMed  Google Scholar 

  21. Prat A, Parker JS, Karginova O, Fan C, Livasy C, Herschkowitz JI, He X, Perou CM (2010) Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res 12(5):R68. doi:10.1186/bcr2635

    Article  PubMed Central  PubMed  Google Scholar 

  22. Kenny PA, Lee GY, Myers CA, Neve RM, Semeiks JR, Spellman PT, Lorenz K, Lee EH, Barcellos-Hoff MH, Petersen OW, Gray JW, Bissell MJ (2007) The morphologies of breast cancer cell lines in three-dimensional assays correlate with their profiles of gene expression. Mol Oncol 1(1):84–96. doi:10.1016/j.molonc.2007.02.004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Holliday DL, Speirs V (2011) Choosing the right cell line for breast cancer research. Breast Cancer Res 13(4):215. doi:10.1186/bcr2889

    Article  PubMed Central  PubMed  Google Scholar 

  24. Thorn CF, Oshiro C, Marsh S, Hernandez-Boussard T, McLeod H, Klein TE, Altman RB (2011) Doxorubicin pathways: pharmacodynamics and adverse effects. Pharmacogenet Genomics 21(7):440–446. doi:10.1097/FPC.0b013e32833ffb56

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Collins I, Weber A, Levens D (2001) Transcriptional consequences of topoisomerase inhibition. Mol Cell Biol 21(24):8437–8451. doi:10.1128/MCB.21.24.8437-8451.2001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Hernandez-Vargas H, Palacios J, Moreno-Bueno G (2007) Molecular profiling of docetaxel cytotoxicity in breast cancer cells: uncoupling of aberrant mitosis and apoptosis. Oncogene 26(20):2902–2913. doi:10.1038/sj.onc.1210102

    Article  CAS  PubMed  Google Scholar 

  27. Li Y, Hussain M, Sarkar SH, Eliason J, Li R, Sarkar FH (2005) Gene expression profiling revealed novel mechanism of action of Taxotere and Furtulon in prostate cancer cells. BMC Cancer 5:7. doi:10.1186/1471-2407-5-7

    Article  PubMed Central  PubMed  Google Scholar 

  28. Knappskog S, Chrisanthar R, Lokkevik E, Anker G, Ostenstad B, Lundgren S, Risberg T, Mjaaland I, Leirvaag B, Miletic H, Lonning PE (2012) Low expression levels of ATM may substitute for CHEK2/TP53 mutations predicting resistance towards anthracycline and mitomycin chemotherapy in breast cancer. Breast Cancer Res 14(2):R47. doi:10.1186/bcr3147

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Merlo LM, Pepper JW, Reid BJ, Maley CC (2006) Cancer as an evolutionary and ecological process. Nat Rev Cancer 6(12):924–935. doi:10.1038/nrc2013

    Article  CAS  PubMed  Google Scholar 

  30. Li X, Lewis MT, Huang J, Gutierrez C, Osborne CK, Wu MF, Hilsenbeck SG, Pavlick A, Zhang X, Chamness GC, Wong H, Rosen J, Chang JC (2008) Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst 100(9):672–679. doi:10.1093/jnci/djn123

    Article  CAS  PubMed  Google Scholar 

  31. Debeb BG, Xu W, Mok H, Li L, Robertson F, Ueno NT, Reuben J, Lucci A, Cristofanilli M, Woodward WA (2010) Differential radiosensitizing effect of valproic acid in differentiation versus self-renewal promoting culture conditions. Int J Radiat Oncol Biol Phys 76(3):889–895. doi:10.1016/j.ijrobp.2009.09.052

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Fillmore CM, Kuperwasser C (2008) Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Res 10(2):R25. doi:10.1186/bcr1982

    Article  PubMed Central  PubMed  Google Scholar 

  33. Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, Jacquemier J, Viens P, Kleer CG, Liu S, Schott A, Hayes D, Birnbaum D, Wicha MS, Dontu G (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1(5):555–567. doi:10.1016/j.stem.2007.08.014

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C, Huang Y, Hu X, Su F, Lieberman J, Song E (2007) let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131(6):1109–1123. doi:10.1016/j.cell.2007.10.054

    Article  CAS  PubMed  Google Scholar 

  35. Alamgeer M, Ganju V, Kumar B, Fox J, Hart S, White M, Harris M, Stuckey J, Prodanovic Z, Schneider-Kolsky ME, Watkins DN (2014) Changes in aldehyde dehydrogenase-1 expression during neoadjuvant chemotherapy predict outcome in locally advanced breast cancer. Breast Cancer Res 16(2):R44. doi:10.1186/bcr3648

    Article  PubMed Central  PubMed  Google Scholar 

  36. Lee HE, Kim JH, Kim YJ, Choi SY, Kim SW, Kang E, Chung IY, Kim IA, Kim EJ, Choi Y, Ryu HS, Park SY (2011) An increase in cancer stem cell population after primary systemic therapy is a poor prognostic factor in breast cancer. Br J Cancer 104(11):1730–1738. doi:10.1038/bjc.2011.159

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Giatromanolaki A, Sivridis E, Fiska A, Koukourakis MI (2011) The CD44+/CD24- phenotype relates to ‘triple-negative’ state and unfavorable prognosis in breast cancer patients. Med Oncol 28(3):745–752. doi:10.1007/s12032-010-9530-3

    Article  CAS  PubMed  Google Scholar 

  38. Greaves M (2010) Cancer stem cells: back to Darwin? Semin Cancer Biol 20(2):65–70. doi:10.1016/j.semcancer.2010.03.002

    Article  PubMed  Google Scholar 

  39. Chuthapisith S, Eremin J, El-Sheemey M, Eremin O (2010) Breast cancer chemoresistance: emerging importance of cancer stem cells. Surg Oncol 19(1):27–32. doi:10.1016/j.suronc.2009.01.004

    Article  PubMed  Google Scholar 

  40. Idowu MO, Kmieciak M, Dumur C, Burton RS, Grimes MM, Powers CN, Manjili MH (2012) CD44(+)/CD24(-/low) cancer stem/progenitor cells are more abundant in triple-negative invasive breast carcinoma phenotype and are associated with poor outcome. Hum Pathol 43(3):364–373. doi:10.1016/j.humpath.2011.05.005

    Article  CAS  PubMed  Google Scholar 

  41. Many AM, Brown AM (2010) Mammary stem cells and cancer: roles of Wnt signaling in plain view. Breast Cancer Res 12(5):313. doi:10.1186/bcr2631

    PubMed Central  PubMed  Google Scholar 

  42. Khramtsov AI, Khramtsova GF, Tretiakova M, Huo D, Olopade OI, Goss KH (2010) Wnt/beta-catenin pathway activation is enriched in basal-like breast cancers and predicts poor outcome. Am J Pathol 176(6):2911–2920. doi:10.2353/ajpath.2010.091125

    Article  PubMed Central  PubMed  Google Scholar 

  43. Debeb BG, Lacerda L, Xu W, Larson R, Solley T, Atkinson R, Sulman EP, Ueno NT, Krishnamurthy S, Reuben JM, Buchholz TA, Woodward WA (2012) Histone deacetylase inhibitors stimulate dedifferentiation of human breast cancer cells through WNT/beta-catenin signaling. Stem Cells 30(11):2366–2377. doi:10.1002/stem.1219

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Willert K, Brown JD, Danenberg E, Duncan AW, Weissman IL, Reya T, Yates JR 3rd, Nusse R (2003) Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 423(6938):448–452. doi:10.1038/nature01611

    Article  CAS  PubMed  Google Scholar 

  45. Qu F, Wang J, Xu N, Liu C, Li S, Wang N, Qi W, Li H, Li C, Geng Z, Liu Y (2013) WNT3A modulates chondrogenesis via canonical and non-canonical Wnt pathways in MSCs. Front Biosci 18:493–503

    Article  CAS  Google Scholar 

  46. Wong RC, Tellis I, Jamshidi P, Pera M, Pebay A (2007) Anti-apoptotic effect of sphingosine-1-phosphate and platelet-derived growth factor in human embryonic stem cells. Stem Cells Dev 16(6):989–1001. doi:10.1089/scd.2007.0057

    Article  CAS  PubMed  Google Scholar 

  47. Bhola NE, Balko JM, Dugger TC, Kuba MG, Sanchez V, Sanders M, Stanford J, Cook RS, Arteaga CL (2013) TGF-beta inhibition enhances chemotherapy action against triple-negative breast cancer. J Clin Invest 123(3):1348–1358. doi:10.1172/JCI65416

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Ferrigno O, Lallemand F, Verrecchia F, L’Hoste S, Camonis J, Atfi A, Mauviel A (2002) Yes-associated protein (YAP65) interacts with Smad7 and potentiates its inhibitory activity against TGF-beta/Smad signaling. Oncogene 21(32):4879–4884. doi:10.1038/sj.onc.1205623

    Article  CAS  PubMed  Google Scholar 

  49. Ampuja M, Jokimaki R, Juuti-Uusitalo K, Rodriguez-Martinez A, Alarmo EL, Kallioniemi A (2013) BMP4 inhibits the proliferation of breast cancer cells and induces an MMP-dependent migratory phenotype in MDA-MB-231 cells in 3D environment. BMC Cancer 13:429. doi:10.1186/1471-2407-13-429

    Article  PubMed Central  PubMed  Google Scholar 

  50. Ono Y, Calhabeu F, Morgan JE, Katagiri T, Amthor H, Zammit PS (2011) BMP signalling permits population expansion by preventing premature myogenic differentiation in muscle satellite cells. Cell Death Differ 18(2):222–234. doi:10.1038/cdd.2010.95

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Arakaki M, Ishikawa M, Nakamura T, Iwamoto T, Yamada A, Fukumoto E, Saito M, Otsu K, Harada H, Yamada Y, Fukumoto S (2012) Role of epithelial-stem cell interactions during dental cell differentiation. J Biol Chem 287(13):10590–10601. doi:10.1074/jbc.M111.285874

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Guo D, Huang J, Gong J (2012) Bone morphogenetic protein 4 (BMP4) is required for migration and invasion of breast cancer. Mol Cell Biochem 363(1–2):179–190. doi:10.1007/s11010-011-1170-1

    Article  CAS  PubMed  Google Scholar 

  53. Samavarchi-Tehrani P, Golipour A, David L, Sung HK, Beyer TA, Datti A, Woltjen K, Nagy A, Wrana JL (2010) Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming. Cell Stem Cell 7(1):64–77. doi:10.1016/j.stem.2010.04.015

    Article  CAS  PubMed  Google Scholar 

  54. Lombardo Y, Scopelliti A, Cammareri P, Todaro M, Iovino F, Ricci-Vitiani L, Gulotta G, Dieli F, de Maria R, Stassi G (2011) Bone morphogenetic protein 4 induces differentiation of colorectal cancer stem cells and increases their response to chemotherapy in mice. Gastroenterology 140(1):297–309. doi:10.1053/j.gastro.2010.10.005

    Article  CAS  PubMed  Google Scholar 

  55. Zhang H, Wu H, Zheng J, Yu P, Xu L, Jiang P, Gao J, Wang H, Zhang Y (2013) Transforming growth factor beta1 signal is crucial for dedifferentiation of cancer cells to cancer stem cells in osteosarcoma. Stem Cells 31(3):433–446. doi:10.1002/stem.1298

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financed by the POSCCE 709/2010 grant with the title: “Clinical and economical impact of proteome and transcriptome molecular profiling in neoadjuvant therapy of triple negative breast cancer (BREASTIMPACT)”, and published under the frame of European Social Fund, Human Resources Development Operational Programme 2007–2013, Project No. POSDRU/159/1.5/S/138776.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oana Tudoran.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online resource 1

Microarray top 100 gene expression data of doxorubicin treatment of Hs578T cells (pdf 124 kb)

Online resource 2

Microarray gene expression data of docetaxel treatment of Hs578T cells (pdf 116 kb)

Online resource 3

Regulation of “Mouse embryonic stem cells pluripotency” signaling pathway in response to doxorubicin treatment of Hs578T cells. Genes highlighted in red were found to be up-regulated by doxorubicin treatment, while the genes highlighted in green were down-regulated (pdf 1064 kb)

Online resource 4

Regulation of “Role of OCT4 in Mammalian Embryonic Stem Cell Pluripotency” signaling pathway in response to doxorubicin treatment of Hs578T cells. Genes highlighted in red were found to be up-regulated by doxorubicin treatment, while the genes highlighted in green were down-regulated (pdf 1448 kb)

Online resource 5

Regulation of “Role of Nanog in Mammalian Embryonic Stem Cell Pluripotency” signaling pathway in response to doxorubicin treatment of Hs578T cells. Genes highlighted in red were found to be up-regulated by doxorubicin treatment, while the genes highlighted in green were down-regulated (pdf 1260 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tudoran, O., Soritau, O., Balacescu, L. et al. Regulation of stem cells-related signaling pathways in response to doxorubicin treatment in Hs578T triple-negative breast cancer cells. Mol Cell Biochem 409, 163–176 (2015). https://doi.org/10.1007/s11010-015-2522-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2522-z

Keywords

Navigation