Skip to main content
Log in

MicroRNA-128 regulates the differentiation of rat bone mesenchymal stem cells into neuron-like cells by Wnt signaling

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Bone marrow mesenchymal stem cells (BMSCs) are a source of multipotent stem cells ideally suited for various cell-based therapies. BMSCs can differentiate into neuron-like cells under the appropriate conditions. MicroRNAs are members of a family of noncoding small RNAs that regulate gene expression at the posttranscriptional level, either by inhibiting mRNA translation or by promoting mRNA degradation. MicroRNAs play an important role in the differentiation of BMSCs into neurons. MicroRNA-128, a brain-enriched microRNA, was recently found to be necessary in the neural differentiation of BMSCs. Studies have shown that Wnt signaling pathway is involved in regulating MSC differentiation. Our goal here was to investigate whether microRNA-128 can regulate the differentiation of BMSCs through modulation of Wnt3a, a key component of the Wnt signaling pathway. By means of dual-luciferase reporter assay, we describe for the first time that by binding to a specific site in the 3′-UTR of Wnt3a in BMSCs, downregulated microRNA-128 may lead to the neural differentiation of mesenchymal stem cells. Transfection of microRNA-128 mimic decreased the nerve cell markers and Wnt3a expression levels. On the other hand, the inhibition of microRNA-128 significantly elevated the nerve cell markers as well as the Wnt3a expression levels. This suggests that microRNA-128 acts as an endogenous attenuator of BMSCs differentiation into neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147

    Article  CAS  PubMed  Google Scholar 

  2. Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, Du J, Aldrich S, Lisberg A, Low WC, Largaespada DA, Verfaillie CM (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418(6893):41–49

    Article  CAS  PubMed  Google Scholar 

  3. Torrente Y, Polli E (2008) Mesenchymal stem cell transplantation for neurodegenerative diseases. Cell Transpl 17(10–11):1103–1113

    Article  Google Scholar 

  4. Wislet-Gendebien S, Laudet E, Neirinckx V, Rogister B (2012) Adult bone marrow: which stem cells for cellular therapy protocols in neurodegenerative disorders? J Biomed Biotechnol 2012:601560–601572

    Article  PubMed Central  PubMed  Google Scholar 

  5. Deng W, Obrocka M, Fischer I, Prockop DJ (2001) In vitro differentiation of human marrow stromal cells into early progenitors of neural cells by conditions that increase intracellular cyclic AMP. Biochem Biophys Res Commun 282(1):148–152

    Article  CAS  PubMed  Google Scholar 

  6. Kim BJ, Seo JH, Bubien JK, Oh YS (2002) Differentiation of adult bone marrow stem cells into neuroprogenitor cells in vitro. Neuroreport 13(9):1185–1188

    Article  PubMed  Google Scholar 

  7. Tiedge H, Bloom FE, Richter D (1999) RNA, whither goest thou? Science 283(5399):186–187

    Article  CAS  PubMed  Google Scholar 

  8. Steward O, Schuman EM (2003) Compartmentalized synthesis and degradation of proteins in neurons. Neuron 40(2):347–359

    Article  CAS  PubMed  Google Scholar 

  9. Foshay KM, Gallicano GI (2007) Small RNAs, big potential: the role of MicroRNAs in stem cell function. Curr Stem Cell Res Ther 2(4):264–271

    Article  CAS  PubMed  Google Scholar 

  10. Wang Y, Russell I, Chen C (2009) MicroRNA and stem cell regulation. Curr Opin Mol Ther 11(3):292–298

    PubMed  Google Scholar 

  11. Yi R, Fuchs E (2011) MicroRNAs and their roles in mammalian stem cells. J Cell Sci 124(11):1775–1783

    Article  CAS  PubMed  Google Scholar 

  12. Collino F, Bruno S, Deregibus MC, Tetta C, Camussi G (2011) MicroRNAs and mesenchymal stem cells. Vitam Horm 87:291–320

    Article  CAS  PubMed  Google Scholar 

  13. Guo L, Zhao RC, Wu Y (2011) The role of microRNAs in self-renewal and differentiation of mesenchymal stem cells. Exp Hematol 39(6):608–616

    Article  CAS  PubMed  Google Scholar 

  14. Yanjie J, Jiping S, Yan Z, Xiaofeng Z, Boai Z, Yajun L (2007) Effects of notch-1 signaling pathway on differentiation of marrow mesenchymal stem cells into neurons in vitro. Neuroreport 18(14):1443–1447

    Article  PubMed  Google Scholar 

  15. Boer J, Wang HJ, Blitterswijk C (2004) Effects of Wnt signa-ling on proliferation and differentiation of human mesenchymal stem cells. Tissue Eng 10(3–4):393–401

    Article  PubMed  Google Scholar 

  16. Zhang X, Podsypanina K, Huang S, Mohsin SK, Chamness GC, Hatsell S, Cowin P, Schiff R, Li Y (2005) Estrogen receptor positivity in mammary tumors of Wnt-1 transgenic mice is influenced by collaborating oncogenic mutations. Oncogene 24(26):4220–4231

    Article  CAS  PubMed  Google Scholar 

  17. Klein JD, Fauza DO (2011) Amniotic and placental mesenchymal stem cell isolation and culture. Methods Mol Biol 698:75–88

    Article  CAS  PubMed  Google Scholar 

  18. Yang Q, Mu J, Li Q, Li A, Zeng Z, Yang J, Zhang X, Tang J, Xie P (2008) A simple and efficient method for deriving neurospheres from bone marrow stromal cells. Biochem Biophys Res Commun 372(4):520–524

    Article  CAS  PubMed  Google Scholar 

  19. Woodbury D, Schwarz EJ, Prockop DJ, Black IB (2000) Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 61(4):364–370

    Article  CAS  PubMed  Google Scholar 

  20. Sanchez-Ramos J, Song S, Cardozo-Pelaez F, Hazzi C, Stedeford T, Willing A, Freeman TB, Saporta S, Janssen W, Patel N, Cooper DR, Sanberg PR (2000) Adult bone marrow stromal cells into neural cells in vitro. Exp Neurol 164(2):247–256

    Article  CAS  PubMed  Google Scholar 

  21. Ye Y, Zeng YM, Wan MR, Lu XF (2011) Induction of human bone marrow mesenchymal stem cells differentiation into neural-like cells using cerebrospinal fluid. Cell Biochem Biophys 59(3):179–184

    Google Scholar 

  22. Godlewski J, Nowicki MO, Bronisz A, Williams S, Otsuki A, Nuovo G, Raychaudhury A, Newton HB, Chiocca EA, Lawler S (2008) Targeting of the Bmi-1oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal. Cancer Res 68(22):9125–9130

    Article  CAS  PubMed  Google Scholar 

  23. Zhang Y, Chao T, Li R, Liu W, Chen Y, Yan X, Gong Y, Yin B, Liu W, Qiang B, Zhao J, Yuan J, Peng X (2009) MicroRNA-128 inhibits glioma cells proliferation by targeting transcription factor E2F3a. J Mol Med (Berl) 87(1):43–51

    Article  CAS  Google Scholar 

  24. Wang JJ, Wang CF, Dang W, Li PF, Wei H (2010) Expression of miR-124 and miR-128 in the process of bone marrow stromal cells differentiating into neural cells. Chin J Histochem Cytochem 19(3):222–224

    Google Scholar 

  25. Clements WK, Ong KG, Traver D (2009) Zebrafish Wnt3 is expressed in developing neural tissue. Dev Dyn 238(7):1788–1795

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Zeng R, Lin ZP, Guo WT, Hu ZB, Hao LIN (2012) Microarray analysis of the Wnt signaling pathway in bone marrow mesenchymal stem cell in neuron differentiation. Guangdong Med J 33(20):3031–3035

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guoqiang Zhao or Yuming Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, R., Tang, Y., Zang, W. et al. MicroRNA-128 regulates the differentiation of rat bone mesenchymal stem cells into neuron-like cells by Wnt signaling. Mol Cell Biochem 387, 151–158 (2014). https://doi.org/10.1007/s11010-013-1880-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-013-1880-7

Keywords

Navigation