Skip to main content

Advertisement

Log in

Regulation of Cardiac Energy Metabolism in Newborn

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Energy in the form of ATP is supplied from the oxidation of fatty acids and glucose in the adult heart in most species. In the fetal heart, carbohydrates, primarily glucose and lactate, are the preferred sources for ATP production. As the newborn matures the contribution of fatty acid oxidation to overall energy production increases and becomes the dominant substrate for the adult heart. The mechanisms responsible for this switch in energy substrate preference in the heart are complicated to identify due to slight differences between species and differences in techniques that are utilized. Nevertheless, our current knowledge suggests that the switch in energy substrate preference occurs due to a combination of events. During pregnancy, the fetus receives a constant supply of nutrients that is rich carbohydrates and poor in fatty acids in many species. Immediately after birth, the newborn is fed with milk that is high in fat and low in carbohydrates. The hormonal environment is also different between the fetal and the newborn. Moreover, direct subcellular changes occur in the newborn period that play a major role in the adaptation of the newborn heart to extrauterin life. The newborn period is unique and provides a very useful model to examine not only the metabolic changes, but also the effects of hormonal changes on the heart. A better understanding of developmental physiology and metabolism is also very important to approach certain disorders in energy substrate metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lopaschuk GD, Spafford MA: Energy substrate utilization by isolated working hearts from newborn rabbits. Am J Physiol 258: H1274--H1280, 1990

    PubMed  CAS  Google Scholar 

  2. Lopaschuk GD, Spafford MA, Marsh DR: Glycolysis is predominant source of myocardial ATP production immediately after birth. Am J Physiol 261: H1698--H1705, 1991

    PubMed  CAS  Google Scholar 

  3. Werner JC, Sicard RE: Lactate metabolism of isolated, perfused fetal, and newborn pig hearts. Pediatr Res 22: 552–556, 1987

    PubMed  CAS  Google Scholar 

  4. Lopaschuk GD, Collins-Nakai RL, Itoi T: Developmental changes in energy substrate use by the heart. Cardiovasc Res 26(12): 1172–1180, 1992

    PubMed  CAS  Google Scholar 

  5. Makinde AO, Kantor PF, Lopaschuk GD: Maturation of fatty acid and carbohydrate metabolism in the newborn heart. Mol Cell Biochem 188: 49–56, 1998

    Article  PubMed  CAS  Google Scholar 

  6. Bartelds B, Knoester H, Smid GB, Takens J, Visser GH, Penninga L, van der Leij FR, Beaufort-Krol GC, Zijlstra WG, Heymans HS, Kuipers JR: Perinatal changes in myocardial metabolism in lambs. Circulation 102: 926–931, 2000

    PubMed  CAS  Google Scholar 

  7. Battaglia FC, Meschia G: Principal substrates of fetal metabolism. Physiol Rev 58: 499–527, 1978

    PubMed  CAS  Google Scholar 

  8. Girard J, Ferre P, Pegorier JP, Duee PH: Adaptations of glucose and fatty acid metabolism during perinatal period and suckling-weaning transition. Physiol Rev 72(2): 507–562, 1992

    PubMed  CAS  Google Scholar 

  9. Comline RS, Silver M: Some aspects of foetal and uteroplacental metabolism in cows with indwelling umbilical and uterine vascular catheters. J Physiol 260(3): 571–586, 1976

    PubMed  CAS  Google Scholar 

  10. Girard J, Duee PH, Ferre P, Pegorier JP, Escriva F, Decaux JF: Fatty acid oxidation and ketogenesis during development. Reprod Nutr Dev 25: 303–319, 1985

    PubMed  CAS  Google Scholar 

  11. Callikan S, Ferre P, Pegorier JP, Girard JR, Marliss EB, Assan R: Fuel metabolism in fasted newborn rabbits. J Dev Physiol 1: 267–281, 1979

    PubMed  CAS  Google Scholar 

  12. Goodwin CW, Mela L, Deutsch C, Forster RE, Miller LD, Delivoria-Papadopoulous M: Development and adaptation of heart mitochondria respiratory chain function in fetus and newborn. Adv Exp Biol 75: 713–719, 1976

    CAS  Google Scholar 

  13. Hallman M: Changes in mitochondrial respiratory chain proteins during perinatal development. Evidence of the importance of environmental oxygen tension. Biochim Biophys Acta 253: 360–372, 1971

    CAS  Google Scholar 

  14. Werner JC, Whitman V, Musselman J, Schuler HG: Perinatal changes in mitochondrial respiration of the rabbit heart. Biol Neonate 42: 208–216, 1982

    PubMed  CAS  Google Scholar 

  15. Fisher DJ, Heyman MA, Rudloph AM: Myocardial consumption of oxygen and carbohydrates in newborn sheep. Pediatr Res 15: 843–846, 1981

    PubMed  CAS  Google Scholar 

  16. Rolph TP, Jones CT: Regulation of glycolytic flux in the heart of the fetal guinea pig. J Dev Physiol 5: 31–49, 1983

    PubMed  CAS  Google Scholar 

  17. Bartelds B, Gratama JW, Knoester H, Takens J, Smid GB, Aarnoudse JG, Heymans HS, Kuipers JR: Perinatal changes in myocardial supply and flux of fatty acids, carbohydrates, and ketone bodies in lambs. Am J Physiol 274: H1962--H1969, 1998

    PubMed  CAS  Google Scholar 

  18. Bartelds B, Knoester H, Beaufort-Krol GC, Smid GB, Takens J, Zijlstra WG, Heymans HS, Kuipers JR: Myocardial lactate metabolism in fetal and newborn lambs. Circulation 99: 1892–1897, 1999

    PubMed  CAS  Google Scholar 

  19. Oey NA, den Boer ME, Wijburg FA, Vekemans M, Auge J, Steiner C, Wanders RJ, Waterham HR, Ruiter JP, Attie-Bitach T: Long-chain fatty acid oxidation during early human development. Pediatr Res 57: 755–759, 2005

    Article  PubMed  CAS  Google Scholar 

  20. Rakheja D, Bennett MJ, Foster BM, Domiati-Saad R, Rogers BB: Evidence for fatty acid oxidation in human placenta, and the relationship of fatty acid oxidation enzyme activities with gestational age. Placenta 23: 447–450, 2002

    Article  PubMed  CAS  Google Scholar 

  21. Basset, JM, Alexander G: Insulin, growth hormone and corticosteroids in neonatal lambs. Normal concentrations and the effect of cold. Biol Neonate 17: 112–125, 1971

    Google Scholar 

  22. Blasquez E, Sugaze M, Blasquez M, Foa PP: Neonatal changes in the concentration of liver cAMP and of serum glucose, FFA, insulin, pancreatic and total glucagon in man and in the rat. J Lab Clin Med 83: 957–967, 1974

    Google Scholar 

  23. Girard J, Cuendet GS, Marliss EB, Kervran A, Rieutort M, Assan R: Fuels, hormones and liver metabolism at term and during the early postnatal period in the rat. J Clin Invest 52: 3190–3200, 1973

    PubMed  CAS  Google Scholar 

  24. Padbury JF, Daikomanolis E, Hobel CJ, Perelman A, Fisher DA: Neonatal adaptation: sympathoadrenal response to cord cutting. Pediatr Res 15: 1483–1487, 1981

    Article  PubMed  CAS  Google Scholar 

  25. Girard J, Kervran A, Soufflet E, Assan R: Factors affecting the secretion of insulin and glucagon by the rat fetus. Diabetes 24: 310–317, 1974

    Google Scholar 

  26. Girard J, Sperling M: Glucagon in the fetus and the newborn. In: Glucagon, edited by P.J. Lefebvre. Berlin: Springer Verlag. 2: 251–274, 1983

    Google Scholar 

  27. Fisher DA, Dussault JH, Sack J, Chopra IJ: Ontogenesis of hypothalamic-piyuitary-thyroid function and metabolism in man, sheep and rat. Recent Prog Horm Res. 33: 59–107, 1977

    Google Scholar 

  28. Walker P, Dubois JD, Dussault JH: Free thyroid hormone concentrations during the postnatal development in the rat. Pediatr Res 14: 247–249, 1980

    PubMed  CAS  Google Scholar 

  29. Onay-Besikci A, Altarejos JY, Lopaschuk GD: gAd-globular head domain of adiponectin increases fatty acid oxidation in newborn rabbit hearts. J Biol Chem 279 (43): 44320–44326, 2004

    Article  PubMed  CAS  Google Scholar 

  30. Combs TP, Berg AH, Rajala MW, Klebanov S, Iyengar P, Jimenez-Chillaron JC, Patti ME, Klein SL, Weinstein RS, Scherer PE: Sexual differentiation, pregnancy, calorie restriction, and aging affect the adipocyte-specific secretory protein adiponectin. Diabetes 52 (2): 268–276, 2003

    PubMed  CAS  Google Scholar 

  31. Fasshauer M, Klein J, Neumann S, Eszlinger M, Paschke R: Hormonal regulation of adiponectin gene expression in 3T3-L1 adipocytes. Biochem Biophys Res Commun 290: 1084–1089, 2002

    Article  PubMed  CAS  Google Scholar 

  32. Devaskar SU, Ollesch C, Rajakumar RA, Rajakumar PA: Developmental changes in ob gene expression and circulating leptin peptide concentrations. Biochem Biophys Res Commun 238 (1): 44–47, 1997

    Article  PubMed  CAS  Google Scholar 

  33. McMillen IC, Muhlhausler BS, Duffield JA, Yuen BS: Prenatal programming of postnatal obesity: fetal nutrition and the regulation of leptin synthesis and secretion before birth. Proc Nutr Soc 63 (3): 405–412, 2004

    Article  PubMed  CAS  Google Scholar 

  34. Minokoshi Y, Kim YB, Peroni OD, Fryer LG, Muller C, Carling D, Kahn BB: Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature 415 (6869): 339–343, 2002

    Article  PubMed  CAS  Google Scholar 

  35. Atkinson LL, Fischer MA, Lopaschuk GD: Leptin activates cardiac fatty acid oxidation independent of changes in the AMP-activated protein kinase-acetyl-CoA carboxylase-malonyl-CoA axis. J Biol Chem. 2002 Aug 16; 277(33): 29424–29430.

    Article  CAS  Google Scholar 

  36. Schaffer JE: Fatty acid transport: the roads taken. Am. J. Physiol. 282: E239--E246, 2002

    CAS  Google Scholar 

  37. Eaton S: Control of mitochondrial β -oxidation flux. Prog Lipid Res 41: 197–239, 2002

    Article  PubMed  CAS  Google Scholar 

  38. Stremmel W, Lotz G, Strohmeyer G, Berk PD: Identification, isolation, and partial characterization of a fatty acid binding protein from rat jejunal microvillous membranes. J Clin Inves 75: 1068–1076, 1985

    Article  CAS  Google Scholar 

  39. Harmon CM, Luce P, Beth AH, Abumrad NA: Labeling of adipocyte membranes by sulfo-N-succinimidyl derivatives of long-chain fatty acids: inhibition of fatty acid transport. J Membr Biol 121: 261–268, 1991

    Article  PubMed  CAS  Google Scholar 

  40. Stahl A, Gimeno RE, Tartaglia LA, Lodish HF: Fatty acid transport proteins: a current view of a growing family. Trends Endocrinol Metab 12: 266–273, 2001

    Article  PubMed  CAS  Google Scholar 

  41. Luiken JJ, Coort SL, Koonen DP, van der Horst DJ, Bonen A, Zorzano A, Glatz JF: regulation of cardiac long-chain fatty acid and glucose uptake by translocation of substrate transporters. Pflugers Arch 448 (1): 1–15, 2004

    Article  PubMed  CAS  Google Scholar 

  42. Rosendal J, Ertbjerg P, Knudsen J: Characterization of ligand binding to acyl-CoA-binding protein. Biochem J 290: 321–326, 1993

    PubMed  CAS  Google Scholar 

  43. Abo-Hashema, KAH, Cake MH, Lukas MA, Knudsen J: Evaluation of the affinity and turnover number of both hepatic mitochondrial and microsomal carnitine acyltransferases: relevance to intracellular partitioning of acyl-CoAs. Biochem 38: 15840–15847, 1999

    Article  CAS  Google Scholar 

  44. Watkins P: Fatty acid activation. Prog Lipid Res 36: 55–83, 1997

    Article  PubMed  CAS  Google Scholar 

  45. Fujino T, Kang MJ, Suzuki H, Iijima H, Yamamoto T: Molecular characterization and expression of rat acyl-CoA synthetase 2. J Biol Chem. 271: 16748–16752, 1996

    Article  PubMed  CAS  Google Scholar 

  46. Tang PZ, Tsai-Morris CH, Dufau ML: Cloning and characterization of a hormonally regulated rat long chain acyl-CoA synthetase. Proc Natl Acad Sci USA. 98: 6581–6586, 2001

    Article  PubMed  CAS  Google Scholar 

  47. Coe NR, Smith AJ, Frohnert BI, Watkins PA, Bernlohr DA: The fatty acid transport protein (FATP1) is a very long chain acyl-CoA synthetase. J Biol Chem 274: 36300–36304, 1999

    Article  PubMed  CAS  Google Scholar 

  48. Coleman RA, Rao P, Fogelsong RJ, Bardes ES: 2-Bromopalmitoyl-CoA and 2-bromopalmitate: promiscuous inhibitors of membrane-bound enzymes. Biochim Biophys Acta 1125: 203–209, 1992

    PubMed  CAS  Google Scholar 

  49. Herrmann T, Buchkremer F, Gosch I, Hall AM, Bernlohr DA, Stremmel W: Mouse fatty acid transport protein 4 (FATP4): characterization of the gene and functional assessment as a very long chain acyl-CoA synthetase. Gene 270: 31–40, 2001

    Article  PubMed  CAS  Google Scholar 

  50. Uchiyama A, Aoyama T, Kamijo K, Uchida Y, Kondo N, Orii T, Hashimoto TJ: Molecular cloning of cDNA encoding rat very long-chain acyl-CoA synthetase. Biol Chem 271: 30360–30365, 1996

    Article  CAS  Google Scholar 

  51. Hoppel CL, Kerner J, Turkaly P, Turkaly J, Tandler B: The malonyl-CoA-sensitive form of carnitine palmitoyltransferase is not localized exclusively in the outer membrane of rat liver mitochondria. J Biol Chem 273: 23495–23503, 1998

    Article  PubMed  CAS  Google Scholar 

  52. Kerner J, Hoppel CL: Fatty acid import into the mitochondria. Biochim Biophys Acta 1486: 1–17, 2000

    PubMed  CAS  Google Scholar 

  53. Oram JF, Bennetch SL, Neely JR: Regulation of fatty acid utilization in isolated perfused rat hearts. J Biol Chem 248: 5299–5309, 1973

    PubMed  CAS  Google Scholar 

  54. McGarry JD, Foster DW: Regulation of hepatic fatty acid oxidation and ketone body production. Annual Rev Biochem 49: 395–420, 1980

    Article  CAS  Google Scholar 

  55. Dyck JR, Cheng JF, Stanley WC, Barr R, Chandler MP, Brown S, Wallace D, Arrhenius T, Harmon C, Yang G, Nadzan AM, Lopaschuk GD: Malonyl coenzyme a decarboxylase inhibition protects the ischemic heart by inhibiting fatty acid oxidation and stimulating glucose oxidation. Circ Res 94 (9): e78–84, 2004

    Article  PubMed  CAS  Google Scholar 

  56. Saggerson ED, Carpenter CA: Regulation of hepatic carnitine palmitoyltransferase activity during the foetal-neonatal transition. FEBS Lett 150: 177–180, 1982

    Article  PubMed  CAS  Google Scholar 

  57. McGarry JD, Mills SE, Long CS, Foster DW: Observations on the affinity for carnitine, and malonyl-CoA sensitivity, of carnitine palmitoyltransferase I in animal and human tissues. Demonstrations of the presence of malonyl-CoA in nonhepatic tissues. Biochem J 214: 21–28, 1983

    CAS  Google Scholar 

  58. McGarry JD, Brown NF: The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis. Eur J Biochem 244: 1–14, 1997

    Article  PubMed  CAS  Google Scholar 

  59. Nicot C, Hegardt FG, Woldegiorgis G, Haro D, Marrero PF: Pig liver carnitine palmitoyltransferase I, with low Km for carnitine and high sensitivity to malonyl-CoA inhibition, is a natural chimera of rat liver and muscle enzymes? Biochemistry 40: 2260–2266, 2001

    Article  PubMed  CAS  Google Scholar 

  60. Schroeder RE, Doma-Medina CL, Das UG, Sivitz WI, Devaskar SU: Effect of maternal diabetes on fetal rat myocardial and skeletal muscle glucose transporters. Pediatr Res 41: 11–19, 1997

    PubMed  CAS  Google Scholar 

  61. Postic C, Leturque A, Prinz RL, Maulard P, Loizeau M, Granner DK, Girard J: Development and regulation of glucose transporter and hexokinase expression in rat. Am J Physiol 266: E548–E559, 1994

    PubMed  CAS  Google Scholar 

  62. Bristow J, Bie DM, Langer LG: Regulation of adult and fetal myocardial phosphofructokinase. J Biol Chem 262: 2172–2175, 1987

    Google Scholar 

  63. Kudo N, Barr AJ, Barr RL, Desai S, Lopaschuk GD: High rates of fatty acid oxidation during reperfusion of ischemic hearts are associated with a decrease in malonyl-CoA levels due to an increase in 5′-AMP-activated protein kinase inhibition of acetyl-CoA carboxylase. J Biol Chem 270: 17513–17520, 1995

    Article  PubMed  CAS  Google Scholar 

  64. Kudo N, Gillespie JG, Kung L, Witters LA, Schulz R, Clanachan AS, Lopaschuk GD: Characterization of 5′AMP-activated protein kinase activity in the heart and its role in inhibiting acetyl-CoA carboxylase during reperfusion following ischemia. Biochim Biophys Acta 1301: 67–75, 1996

    PubMed  Google Scholar 

  65. Makinde AO, Gamble J, Lopaschuk GD: Upregulation of 5′-AMP-activated protein kinase is responsible for the increase in myocardial fatty acid oxidation rates following birth in the newborn rabbit. Circ Res 80: 482–489, 1997

    PubMed  CAS  Google Scholar 

  66. Lopaschuk GD, Witters LA, Itoi T, Barr R, Barr A: Acetyl-CoA carboxylase involvement in the rapid maturation of fatty acid oxidation in the newborn rabbit heart. J Biol Chem 269: 25871–25878, 1994

    PubMed  CAS  Google Scholar 

  67. Poole RC, Halestrap AP: Transport of lactate and other monocarboxylates across mammalian plasma membranes. Am J Physiol 264: C761–C782, 1993

    PubMed  CAS  Google Scholar 

  68. Barnie SE, Harris P: Myocardial enzyme activities in guinea pigs during development. Am J Physiol 233: H707–H710, 1977

    Google Scholar 

  69. Ohtsuka T, Gilbert RD: Cardiac enzyme activities in fetal and adult pregnant and non pregnant sheep exposed to high-altitude ischemia. J Appl Physiol 79: 1286–1289, 1995

    PubMed  CAS  Google Scholar 

  70. Onay-Besikci A, Campbell FM, Hopkins TA, Dyck JRB, Lopaschuk GD: Relative importance of malonyl CoA and carnitine in maturation of fatty acid oxidation in newborn rabbit heart. Am J Physiol 284: H283–H289, 2003

    Google Scholar 

  71. Werner JC, Sicard RE, Schuler HG: Palmitate oxidation by isolated working fetal newborn pig hearts. Am J Physiol 256: E315–E321, 1989

    PubMed  CAS  Google Scholar 

  72. Brown NF, Weis BC, Husti JE, Foster DW, McGarry JD: Mitochondrial carnitine palmitoyltransferase I isoform switching in the developing rat heart. J Biol Chem 270: 8952–8957, 1995

    Article  PubMed  CAS  Google Scholar 

  73. Dyck JR, Barr AJ, Barr RL, Kolattukudy PE, Lopaschuk GD: Characterization of cardiac malonyl-CoA decarboxylase and its putative role in regulating fatty acid oxidation. Am J Physiol 275: H2122–H2129, 1998

    PubMed  CAS  Google Scholar 

  74. Lopaschuk GD, Belke DD, Gamble J, Itoi T, Schönekess BO: Regulation of fatty acid oxidation in the mammalian heart in health and disease. Biochim Biophys Acta 1213: 263–276, 1994

    PubMed  CAS  Google Scholar 

  75. Hardie DG, Carling D: The AMP-activated protein kinase—fuel gauge of the mammalian cell? Eur J Biochem 246: 259–273, 1997

    Article  PubMed  CAS  Google Scholar 

  76. Goodwin GW, Taegtmeyer H: Regulation of fatty acid oxidation of the heart by MCD and ACC during contractile stimulation. Am J Physiol 277: E772–E777, 1999

    PubMed  CAS  Google Scholar 

  77. Dyck JR, Berthiaume LG, Thomas PD, Kantor PF, Barr AJ, Barr R, Singh D, Hopkins TA, Voilley N, Prentki M, Lopaschuk GD: Characterization of rat liver malonyl-CoA decarboxylase and the study of its role in regulating fatty acid metabolism. Biochem J 350: 599–608, 2000

    Article  PubMed  CAS  Google Scholar 

  78. Kelly DP, Gordon JI, Alpers R, Strauss AW: The tissue-specific expression and developmental regulation of two nuclear genes encoding rat mitochondrial proteins: medium chain acyl-CoA dehydrogenase and mitochondrial malate dehydrogenase. J Biol Chem 264 (32): 18921–18925, 1989

    PubMed  CAS  Google Scholar 

  79. Lehman JJ, Kelly DP: Gene regulatory mechanisms governing energy metabolism during cardiac hypertrophic growth. Heart Fail Rev 7(2): 175–185, 2002

    Article  PubMed  CAS  Google Scholar 

  80. Brandt J, Djouadi F, Kelly DP: Fatty acids activate transcription of the muscle carnitine palmitoyltransferase I gene in cardiac myocytes via the peroxysome proliferator-activated receptor α. J Biol Chem 273: 23786–23793, 1998

    Article  PubMed  CAS  Google Scholar 

  81. Gulick T, Cresci S, Caira T, Moore DD, Kelly DP: The peroxisome proliferator-activated receptor regulates mitochondrial fatty acid oxidative enzyme gene expression. Proc Natl Acad Sci USA 91 (23): 11012–11016, 1994

    Article  PubMed  CAS  Google Scholar 

  82. Campbell FM, Kozak R, Wagner A, Altarejos JY, Dyck JR, Belke DD, Severson DL, Kelly DP, Lopaschuk GD: A role for peroxisome proliferator-activated receptor alpha (PPARalpha) in the control of cardiac malonyl-CoA levels: reduced fatty acid oxidation rates and increased glucose oxidation rates in the hearts of mice lacking PPARalpha are associated with higher concentrations of malonyl-CoA and reduced expression of malonyl-CoA decarboxylase. J Biol Chem 277: 4098–4103, 2002

    Article  PubMed  CAS  Google Scholar 

  83. Semenza GL, Roth PH, Fang HM, Wang GL: Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J Biol Chem 269 (38): 23757–23763, 1994

    PubMed  CAS  Google Scholar 

  84. Semenza GL, Jiang BH, Leung SW, Passantino R, Concordet JP, Maire P, Giallongo A: Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J Biol Chem 271(51): 32529–32537, 1996

    Article  PubMed  CAS  Google Scholar 

  85. Nau PN, Van Natta T, Ralphe JC, Teneyck CJ, Bedell KA, Caldarone CA, Segar JL, Scholz TD: Metabolic adaptation of the fetal and postnatal ovine heart: regulatory role of hypoxia-inducible factors and nuclear respiratory factor-1. Pediatr Res 52 (2): 269–278, 2002

    Article  PubMed  CAS  Google Scholar 

  86. Iyer NV, Kotch LE, Agani F, Leung SW, Laughner E, Wenger RH, Gassmann M, Gearhart JD, Lawler AM, Yu AY, Semenza GL: Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev 12: 149–162, 1998

    PubMed  CAS  Google Scholar 

  87. Ryan HE, Lo J, Johnson RS: HIF-1 alpha is required for solid tumor formation and embryonic vascularization. EMBO J 17: 3005–3015, 1998

    Article  PubMed  CAS  Google Scholar 

  88. Bremer J: Carnitine-metabolism and functions. Physiol Rev 63: 1420–1480, 1983

    PubMed  CAS  Google Scholar 

  89. Bartelds B, Takens J, Smid GB, Zammit VA, Prip-Buus C, Kuipers JR, van der Leij FR: Myocardial carnitine palmitoyltransferase I expression and long-chain fatty acid oxidation in fetal and newborn lambs. Am J Physiol 286 (6): H2243–H2248, 2004

    CAS  Google Scholar 

  90. Xia Y, Buja LM, McMillin JB: Change in expression of heart carnitine palmitoyltransferase I isoforms with electrical stimulation of cultured rat neonatal cardiac myocytes. J Biol Chem 271: 12082–12087, 1996

    Article  PubMed  CAS  Google Scholar 

  91. Medina JM: The role of lactate as an energy substrate for the brain during the early neonatal period. Biol Neonate 48 (4): 237–244, 1985

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arzu Onay-Besikci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Onay-Besikci, A. Regulation of Cardiac Energy Metabolism in Newborn. Mol Cell Biochem 287, 1–11 (2006). https://doi.org/10.1007/s11010-006-9123-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-006-9123-9

Keywords

Navigation