Skip to main content
Log in

On SLE Martingales in Boundary WZW Models

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

Following Bettelheim et al. (Phys Rev Lett 95:251601, 2005), we consider the boundary WZW model on a half-plane with a cut growing according to the Schramm–Loewner stochastic evolution and the boundary fields inserted at the tip of the cut and at infinity. We study necessary and sufficient conditions for boundary correlation functions to be SLE martingales. Necessary conditions come from the requirement for the boundary field at the tip of the cut to have a depth two null vector. Sufficient conditions are established using Knizhnik–Zamolodchikov equations for boundary correlators. Combining these two approaches, we show that in the case of G = SU(2) the boundary correlator is an SLE martingale if and only if the boundary field carries spin 1/2. In the case of G = SU(n) and the level k = 1, there are several situations when boundary one-point correlators are SLE κ -martingales. If the boundary field is labelled by the defining n-dimensional representation of SU(n), we obtain \({\varkappa=2}\) . For n even, by choosing the boundary field labelled by the (unique) self-adjoint fundamental representation, we get \({\varkappa=8/(n {+} 2)}\) . We also study the situation when the distance between the two boundary fields is finite, and we show that in this case the \({{\rm SLE}_\varkappa}\) evolution is replaced by \({{\rm SLE}_{\varkappa,\rho}}\) with \({\rho=\varkappa -6}\) .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bauer M., Bernard D.: \({{\rm SLE}_\varkappa}\) growth processes and conformal field theories. Phys. Lett. B 543, 135– (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Bauer M., Bernard D.: 2D growth processes: SLE and Loewner chains. Phys. Rep. 432, 115–221 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  3. Bettelheim E., Gruzberg I., Ludwig A.W.W., Wiegmann P.: Stochastic Loewner evolution for conformal field theories with Lie-group symmetries. Phys. Rev. Lett. 95, 251601 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  4. Cardy J.: SLE for theoretical physicists. Ann. Phys. 318, 81–118 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Cardy J.: Conformal invariance and surface critical behavior. Nucl. Phys. B 240, 514–532 (1984)

    Article  ADS  Google Scholar 

  6. Cardy, J.: SLE(κ, ρ) and conformal field theory. arXiv:math-ph/0412033

  7. Di Francesco P., Mathieu P., Senechal D.: Conformal field theory. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  8. Gruzberg I.A.: Stochastic geometry of critical curves, Schramm–Loewner evolutions, and conformal field theory. J. Phys. A 39, 12601–12656 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Knizhnik V.G., Zamolodchikov A.B.: Current algebra and Wess–Zumino model in two dimensions. Nucl. Phys. B 247, 83–103 (1984)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Lawler G., Schramm O., Werner W.: Conformal restriction: the chordal case. J. Am. Math. Soc. 16, 917–955 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Rasmussen, J.: On SU(2) Wess–Zumino–Witten models and stochastic evolutions. arXiv:hep-th/0409026

  12. Rimanyi, R., Varchenko, A.: Conformal blocks in the tensor product of vector representations and localization formulas. arXiv:0911.3253

  13. Santachiara R.: SLE in self-dual critical Z(N) spin systems: CFT predictions. Nucl. Phys. B 793, 396–424 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Schramm O.: Scaling limits of loop-erased random walks and uniform spanning trees. Israel J. Math. 118, 221–288 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Schramm O., Wilson D.: SLE coordinate changes. New York J. Math. 11, 659–669 (2005) (electronic)

    MathSciNet  MATH  Google Scholar 

  16. Smirnov S.: Towards conformal invariance of 2D lattice models. Proc. Int. Congr. Math. 2, 1421–1451 (2006) arXiv:0708.0032

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Alekseev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alekseev, A., Bytsko, A. & Izyurov, K. On SLE Martingales in Boundary WZW Models. Lett Math Phys 97, 243–261 (2011). https://doi.org/10.1007/s11005-011-0500-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-011-0500-2

Mathematics Subject Classification (2000)

Keywords

Navigation