Skip to main content
Log in

Active control of strain in a composite plate using shape memory alloy actuators

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

The present study aims to design an experimental test bench to analyze and control a smart structure system composed of a woven fiberglass laminate plate with shape memory alloy (SMA) actuators instilled on the surface. The aim of this design is to accurately augment the strain of the composite plate. Finite element analysis was employed to model the composite structure and determine the placement of the SMA actuators in order to produce the desired structural response efficiently with minimum power consumption. Due to the nonlinear behavior of the SMA actuator, it will be critical to incorporate a feedback control system that is able to accurately morph the structure by changing the strain of the composite structure. A Proportional–Integral–Derivative (PID) controller was designed to improve its tracking performance. Simulation on the control system showed that the PID controller produced acceptable response and managed to reduce steady state error for different types of input. The PID controller was then implemented in the experimental setup to control the smart composite plate. Results from the experiment illustrates that the smart structure system that has been designed performed effectively and the strain value of the composite structure can be controlled accurately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Arai K., Aramaki S., Yanagisawa K.: Continuous system modeling of shape memory alloy (SMA) for control analysis. In: Proceedings of 5th International Symposium Micro Machine Human Science, pp. 97–100 (1994)

  • Barzegari, M.M., Dardel, M., Fathi, A., Ghadimi, M.: Aeroelastic characteristics of cantilever wing with embedded shape memory alloys. Acta Astronaut. 79, 189–202 (2012)

    Article  Google Scholar 

  • Benafan, O., Brown, J., Calkins, F.T., Kumar, P., Stebner, A.P., Turner, T.L., Vaidyanathan, R., Webster, J., Young, M.L.: Shape memory alloy actuator design: CASMART collaborative best practices and case studies. Int. J. Mech. Mater. Des. 10(1), 1–42 (2014)

    Article  Google Scholar 

  • Bolton, W.: Mechatronics, 3rd edn. Prentice Hall, England (2003)

    Google Scholar 

  • Brinson, L.C.: One-dimensional constitutive behavior of shape memory alloy: thermomechanical derivation with non-constant material functions and redefined martensite internal variable. J. Intell. Mater. Syst. Struct. 4(2), 229–242 (1993)

    Article  Google Scholar 

  • Choi, S., Lee, J.J.: The shape control of a composite beam with embedded shape memory alloy wire actuators. Smart Mater. Struct. 7(6), 29–38 (1998)

    Article  MathSciNet  Google Scholar 

  • Elahinia, M., Ashrafiuon, H.: Nonlinear control of a shape memory alloy actuated manipulator. J. Vib. Acoust. 124, 566–575 (2002)

    Article  Google Scholar 

  • Fontanazza, F., Talling, R., Jackson, M., Dashwood, R., Dyeand, D., Iannucci, L.: Morphing Wing Technologies Research. Seas DTC First Conference, 2006

  • Gandhi, F., Anusonti-Inthra, P.: Skin design studies for variable camber morphing airfoils. Smart Mater. Struct. 17, 015025 (2008)

    Article  Google Scholar 

  • Grigorie, T.L., Botez, R.M., Popov, A.V., Mamou, M., Mébarki, Y.: A hybrid fuzzy logic Proportional–Integral–Derivative and conventional on–off controller for morphing wing actuation using shape memory alloy. part 2: Controller implementation and validation. Aeronaut. J. 116(1179), 451–465 (2012)

    Google Scholar 

  • Gupta, V., Sharma, M., Thakur, N., Singh, S.P.: Active vibration control of a smart plate using a piezoelectric sensor-actuator pair at elevated temperatures. Smart Mater. Struct. 20(10), 105023 (2011)

    Article  Google Scholar 

  • Icardi, U., Ferrero, L.: Preliminary study of an adaptive wing with shape memory alloy torsion actuators. Mater. Des. 30(10), 4200–4210 (2009)

    Article  Google Scholar 

  • Jayender, J.: Modeling and control of shape memory alloy actuators. IEEE Trans. Control Syst. Technol. 16(2), 279–287 (2008)

    Article  Google Scholar 

  • Jovanović, M.M., Simonović, A.M., Zorić, N.D., Lukić, N.S., Stupar, S.N., Ilić, S.S.: Experimental studies on active vibration control of a smart composite beam using a PID controller. Smart Mater. Struct. 22(11), 115038 (2013)

    Article  Google Scholar 

  • Kapuria, S., Yasini, M.Y.: Active vibration control of smart plates using directional actuation and sensing capability of piezoelectric composites. Acta Mech. 224(6), 1185–1199 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  • Kumar, R.S., Ray, M.C.: Active constrained layer damping of smart laminated composite sandwich plates using 1–3 piezoelectric composites. Int. J. Mech. Mater. Des. 8(3), 197–218 (2012)

  • Liang, C., Rogers, C.A.: One-dimensional thermomechanical constitutive relations for shape memory materials. J. Intell. Mater. Syst. Struct. 1(2), 207–234 (1990)

    Article  Google Scholar 

  • Majima, S., Kodama, K., Hasegawa, T.: Modeling of shape memory alloy actuator and tracking control system with the model. IEEE Trans. Control Syst. Technol. 9(1), 54–59 (2001)

    Article  Google Scholar 

  • Meo, M., Marulo, F., Guida, M., Russo, S.: Shape memory alloy hybrid composites for improved impact properties for aeronautical applications. Compos. Struct. 95, 756–766 (2013)

    Article  Google Scholar 

  • Moallem, M., Lu, J.: Application of shape memory alloy actuators for flexure control: theory and experiments. IEEE/ASME Trans. Mechatron. 10(5), 495–501 (2005)

    Article  Google Scholar 

  • Oh, J.T., Park, H.C., Hwang, W.: Active shape control of a double-plate structures using piezoceramics and sma wires. Smart Mater. Struct. 10(5), 1100–1106 (2001)

    Article  Google Scholar 

  • Tanaka, K.: A thermomechanical sketch of shape memory effect: one-dimensional tensile behavior. Res. Mech. 18, 251–263 (1986)

    Google Scholar 

  • Technical Data of Zhengke® Electromotor PMDC Spur Gear Motor. Available at: http://wzh001.gotoip55.com/upload/file/ZGA37RG%20%26%20ZGB37RG.pdf

  • Thill, C., Etches, J., Bond, I., Potter, K., Weaver, P.: Morphing skins. Aeronaut. J. 112, 117–139 (2008)

    Google Scholar 

  • Wang, Q., Xu, Z., Zhu, Q.: Structural design of morphing trailing edge actuated by SMA. Front. Mech. Eng. 8(3), 268–275 (2013)

    Article  MathSciNet  Google Scholar 

  • Yang, S.M., Roh, J.H., Han, J.H., Lee, I.: Experimental studies on active shape control of composite structures using SMA actuators. J. Intell. Mater. Syst. Struct. 17, 767 (2006). doi:10.1177/1045389X06055830

    Article  Google Scholar 

  • Zak, A.J., Cartmell, M.P., Ostachoiwcz, W.M.: Static and dynamics behaviour of composite structures with shape memory alloy components. Mater. Sci. Forum 440–441, 345–354 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge that the research findings presented in this paper was funded by Research University Grant Scheme (RUGS) 05-05-11-1557RU from Universiti Putra Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ermira J. Abdullah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdullah, E.J., Majid, D.L., Romli, F.I. et al. Active control of strain in a composite plate using shape memory alloy actuators. Int J Mech Mater Des 11, 25–39 (2015). https://doi.org/10.1007/s10999-014-9277-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-014-9277-7

Keywords

Navigation