Skip to main content
Log in

Isoconversional kinetic, mechanism and thermodynamic studies of the thermal decomposition of NH4Co0.8Zn0.1Mn0.1PO4·H2O

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The single-phase NH4Co0.8Zn0.1Mn0.1PO4·H2O was successfully synthesized by precipitating method. The characterizations were carried out using TG/DTG/DTA, FTIR, AAS, XRD and SEM methods. Two decomposition steps correspond to the co-elimination and polycondensation, respectively. The final product is Co1.6Zn0.2Mn0.2P2O7. The XRD and AAS results confirmed the substitution of Zn2+ and Mn2+ into the Co2+ positions. The iterative isoconversional method of KAS was used to calculate the exact E α values. Both steps were confirmed to be single-step kinetic processes with the unique kinetic triplets: E α , A, f(α) or g(α). The most probable reaction mechanisms of the first and final steps were found to be F4 and F2, which belong to the reaction mechanism of chemical reaction for both steps, respectively. The pre-exponential factor A was calculated to be 1.89 × 1014 and 1.01 × 1012 s−1 for the first and final steps, respectively. The ΔH , ΔS and ΔG of the transition state complexes were evaluated from the kinetic parameters. The kinetic triplets and the reaction mechanisms are reported for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Feng P, Bu X, Tolbert SH, Stucky GD. Syntheses and characterizations of chiral tetrahedral cobalt phosphates with zeolite ABW and related frameworks. J Am Chem Soc. 1997;119:2497–504.

    Article  CAS  Google Scholar 

  2. Ng HY, Harrison WTA. Monoclinic NaZnPO4-ABW, a new modification of the zeolite ABW structure type containing elliptical eight-ring channels. Microporous Mesoporous Mater. 1998;23:197–202.

    Article  CAS  Google Scholar 

  3. Bu X, Feng P, Gier TE, Stucky GD. Structural and chemical studies of zeolite ABW type phases: syntheses and characterizations of an ammonium zincophosphate and an ammonium beryllophosphate zeolite ABW structure. Zeolites. 1997;19:200–8.

    Article  CAS  Google Scholar 

  4. Harrison WTA, Sobolev AN, Phillip MLF. Hexagonal ammonium zinc phosphate, (NH4)ZnPO4, at 10 K. Acta Crystallogr. 2001;C57:508–9.

    CAS  Google Scholar 

  5. Chen J, Natarajan S, Thomas JM, Jones RH, Hursthouse MB. A novel open-framework cobalt phosphate containing a tetrahedrally coordinated cobalt(II) center: CoPO4·0.5C2H10N2. Angew Chem Int Ed. 1994;33:639–40.

    Article  Google Scholar 

  6. Yuan HM, Chen JS, Zhu GS, Li JY, Yu JH, Yang GD, Xu RR. The first organo-templated cobalt phosphate with a zeolite topology. Inorg Chem. 2000;39:1476–9.

    Article  CAS  Google Scholar 

  7. Harrison WTA. [H3N(CH2)3NH3]0.5[ZnPO4], an organically template zincophosphate analogue of the aluminosilicate zeolite edingtonite. Acta Crystallogr. 2001;E57:m248–50.

    Google Scholar 

  8. Gaslain FOM, Chippindale AM. Synthesis and crystal structure of a 3-D zincphosphate, [C5N2H14][Zn2(PO3(OH))3], containing (4.8) net sheets. C R Chim. 2005;8:521–9.

    Article  CAS  Google Scholar 

  9. Neeraj S, Natarajan S. A three-dimensional zeolitic zinc phosphate, [C8N5H28][Zn5(PO4)5]H2O, with thomsonite structure. J Phys Chem Solids. 2001;62:1499–505.

    Article  CAS  Google Scholar 

  10. Natarajan S, Neeraj S, Choudhury A, Rao CNR. Three-dimensional open-framework cobalt(II) phosphates by novel routes. Inorg Chem. 2000;39:1426–33.

    Article  CAS  Google Scholar 

  11. Fernández LT, Trobajo C, de Pedro I, et al. Ammonium–cobalt–nickel phosphate, NH4[Co1−xNixPO4]·H2O. J Solid State Chem. 2013;206:75–84.

    Article  Google Scholar 

  12. Ramajo B, Espina A, Barros N, García JR. Thermal and thermo-oxidative decomposition of ammonium–iron(II) phosphate monohydrate. Thermochim Acta. 2009;487:60–4.

    Article  CAS  Google Scholar 

  13. Islam MS, Dominko R, Masquelier C, Sirisopanaporn C, Armstrong AR, Bruce PG. Silicate cathodes for lithium batteries: alternatives to phosphates? J Mater Chem. 2011;21:9811–8.

    Article  CAS  Google Scholar 

  14. Goñi A, Pizarro JL, Lezama LM, Barberis GE, Arriortua MI, Rojo T. Synthesis, crystal structure and spectroscopic properties of the NH4NiPO4 center dot nH(2)O (n = 1,6) compounds; Magnetic behaviour of the monohydrated phase. J Mater Chem. 1996;6:421–7.

    Article  Google Scholar 

  15. Rajic N, Logar NZ, Kaucic V. A novel open framework zincophosphate: synthesis and characterization. Zeolites. 1995;15:672–8.

    Article  CAS  Google Scholar 

  16. Rajic N, Gabrovsek R, Kaučič V. Dehydration behavior of some microporous zincophosphates. Thermochim Acta. 1996;278:157–64.

    Article  Google Scholar 

  17. Danvirutai C, Noisong P, Youngme S. Some thermodynamic functions and kinetics of thermal decomposition of NH4MnPO4·H2O in nitrogen atmosphere. J Therm Anal Calorim. 2010;100:117–24.

    Article  CAS  Google Scholar 

  18. Sun X, Wang S, Wang Z, Ye X, Wen T, Huang F. Proton conductivity of CeP2O7 for intermediate temperature fuel cells. Solid State Ionics. 2008;179:1138–41.

    Article  CAS  Google Scholar 

  19. Bian J, Kim DW, Hong K. Microwave dielectric properties of (Ca1−xZnx)2P2O7. Mater Lett. 2005;59:257–60.

    Article  CAS  Google Scholar 

  20. Masson NC, Souza EF, Galembeck F. Calcium and iron (III) polyphosphate gel formation and aging. Colloids Surf A. 1997;121:247–55.

    Article  CAS  Google Scholar 

  21. Chen B, Munson EJ. Investigation of the mechanism of n-butane oxidation on vanadium phosphorus oxide catalysts: evidence from isotopic labeling studies. J Am Chem Soc. 2002;124:1638–52.

    Article  CAS  Google Scholar 

  22. Ikotun OF, Marino N, Kruger PE, Julve M, Doyle RP. Coordination complexes incorporating pyrophosphate: Structural overview and exploration of their diverse magnetic, catalytic and biological properties. Coord Chem Rev. 2010;254:890–915.

    Article  CAS  Google Scholar 

  23. Chung UC, Mesa JL, Pizarro JL, Jubera V, Lezama L, Arriortua MI, et al. Mn(HPO3): a new manganese (II) phosphite with a condensed structure. J Solid State Chem. 2005;178:2913–21.

    Article  CAS  Google Scholar 

  24. Boonchom B, Youngme S, Maensiri S, Danvirutai C. Nanocrystalline serrabrancaite (MnPO4·H2O) prepared by a simple precipitation route at low temperature. J Alloys Compd. 2008;454:78–82.

    Article  CAS  Google Scholar 

  25. Noisong P, Danvirutai C, Srithanratana T, Boonchom B. Synthesis, characterization and non-isothermal decomposition kinetics of manganese hypophosphite monohydrate. Solid State Sci. 2008;10:1598–604.

    Article  CAS  Google Scholar 

  26. Fowlis DC, Stager CV. Antiferromagnetic resonance in Mn2P2O7. Can J Phys. 1972;50:2681–7.

    Article  CAS  Google Scholar 

  27. Takita Y, Sano KI, Muraya T, Nishiguchi H, Kawata N, Ito M, et al. Oxidative dehydrogenation of iso-butane to iso-butene II Rare earth phosphate catalysts. Appl Catal. 1998;170A:23–31.

    Article  Google Scholar 

  28. Moussa MB, Abdellaoui M, Mathlouthi H, Lamloumi J, Guégan AP. Investigation of the cycle stability and diffusivity of hydrogen in the MmNi3.55Mn0.4Al0.3Co0.6Fe0.15 compound. J Alloys Compd. 2006;407:256–62.

    Article  Google Scholar 

  29. Sronsri C, Noisong P, Danvirutai C. Synthesis, non-isothermal kinetic and thermodynamic studies of the formation of LiMnPO4 from NH4MnPO4·H2O precursor. Solid State Sci. 2014;32:67–75.

    Article  CAS  Google Scholar 

  30. Sronsri C, Noisong P, Danvirutai C. Synthesis and properties of LiMIIPO4 (MII = Mg, Mn0.5Mg0.5, Co0.5Mg0.5) affected by isodivalent doping and Li-sources. Solid State Sci. 2014;36:80–8.

    Article  CAS  Google Scholar 

  31. Kissinger HE. Reaction kinetics in differential thermal analysis. J Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  32. Akahira T, Sunose T. Trans. Joint convention of four electrical institutes, paper no. 246, 1969. Res Report Chiba Inst Technol. 1971;16:22–31.

  33. Cullity BD. Elements of X-ray Diffraction. 2nd ed. MA: Addison-Wesley Publishing; 1978.

    Google Scholar 

  34. Vlaev LT, Nikolova MM, Gospodinov GG. Non-isothermal kinetics of dehydration of some selenite hexahydrates. J Solid State Chem. 2004;177:2663–9.

    Article  CAS  Google Scholar 

  35. Chai Q, Chen Z, Liao S, He Y, Li Y, Wu W, Li B. Preparation of LiZn0.9PO4:Mn0.1·H2O via a simple and novel method and its non-isothermal kinetics using iso-conversional calculation procedure. Thermochim Acta. 2012;533:74–80.

    Article  CAS  Google Scholar 

  36. Genieva SD, Vlaev LT, Atanassov AN. Study of the thermooxidative degradation kinetics of poly (tetrafluoroethene) using iso-conversional calculation procedure. J Therm Anal Calorim. 2010;99:551–61.

    Article  CAS  Google Scholar 

  37. Chrissafis K, Paraskevopoulos KM, Papageorgiou GZ, Bikiaris DN. Thermal decomposition of poly (propylene sebacate) and poly (propylene azelate) biodegradable polyesters: Evaluation of mechanisms using TGA, FTIR and GS/MS. J Anal Appl Pyrolysis. 2011;92:123–30.

    Article  CAS  Google Scholar 

  38. Senum GI, Yang RT. Rational approximations of the integral of the Arrhenius function. J Therm Anal Calorim. 1977;11:445–7.

    Article  Google Scholar 

  39. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  40. Vlaev LT, Georgieva VG, Genieva SD. Products and kinetics of non-isothermal decomposition of vanadium (IV) oxide compounds. J Therm Anal Calorim. 2007;88:805–12.

    Article  CAS  Google Scholar 

  41. Jiang H, Wang JG, Wu SQ, Wang BS, Wang ZZ. Pyrolysis kinetics of phenol–formaldehyde resin by non-isothermal thermogravimetry. Carbon. 2010;48:352–8.

    Article  CAS  Google Scholar 

  42. Lu T, Arash T, Jianglong Y. An experimental study on thermal decomposition behavior of magnesite. J Therm Anal Calorim. 2014;118:1577–84.

    Article  Google Scholar 

  43. Mohammad TT, Nazanin Y, Mostafa R. Kinetic analysis of the complex process of poly (vinyl alcohol) pyrolysis using a new coupled peak deconvolution method. J Therm Anal Calorim. 2014;118:1733–46.

    Article  Google Scholar 

  44. Fanglong Z, Qianqian F, Yanfang X, Rangtong L, Kejing L. Kinetics of pyrolysis of ramie fabric wastes from thermogravimetric data. J Therm Anal Calorim. 2015;119:651–7.

    Article  Google Scholar 

  45. Ying L, Yu-Tong J, Tong-Lai Z, Chang-Gen F, Li Y. Thermal kinetic performance and storage life analysis of a series of high-energy and green energetic materials. J Therm Anal Calorim. 2015;119:659–70.

    Article  Google Scholar 

  46. Gao Z, Amasaki I, Nakada M. A description of kinetics of thermal decomposition of calcium oxalate monohydrate by means of the accommodated Rn model. Thermochim Acta. 2002;385:95–103.

    Article  CAS  Google Scholar 

  47. Malek J. The kinetic analysis of non–isothermal data. Thermochim Acta. 1992;200:257–69.

    Article  CAS  Google Scholar 

  48. Harcharras M, Ennaciri A, Rulmont A, Gilbert B. Vibrational spectra and structures of double diphosphates M2CdP2O7 (M = Li, Na, K, Rb, Cs). Spectrochim Acta. 1997;A53:345–52.

    Article  Google Scholar 

  49. Janković B, Mentus S, Jelić D. A kinetic study of non-isothermal decomposition process of anhydrous nickel nitrate under air atmosphere. Physica. 2009;404B:2263–9.

    Article  Google Scholar 

  50. Boonchom B. Kinetics and thermodynamic properties of the thermal decomposition of manganese dihydrogenphosphate dehydrate. J Chem Eng Data. 2008;53:1533–8.

    Article  CAS  Google Scholar 

  51. Gao X, Dollimore D. The thermal decomposition of oxalates: Part 26. A kinetic study of the thermal decomposition of manganese (II) oxalate dehydrate. Thermochim Acta. 1993;215:47–63.

    Article  CAS  Google Scholar 

  52. Boonchom B. Kinetic and thermodynamic studies of MgHPO4·3H2O by non-isothermal decomposition data. J Therm Anal Calorim. 2009;98:863–71.

    Article  CAS  Google Scholar 

  53. Chen Z, Chai Q, Liao S, He Y, Li Y, Bo X, Wu W, Li B. Application of isoconversional calculation procedure to non-isothermal kinetic study: III. Thermal decomposition of ammonium cobalt phosphate hydrate. Thermochim Acta. 2012;543:205–10.

    Article  CAS  Google Scholar 

  54. Rooney JJ. Eyring transition-state theory and kinetics in catalysis. J Mol Catal A Chem. 1995;96:L1–3.

    Article  CAS  Google Scholar 

  55. Noisong P, Danvirutai C. Kinetics and mechanism of thermal dehydration of KMnPO4·H2O in nitrogen atmosphere. Ind Eng Chem Res. 2010;49:3146–51.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Materials Chemistry Research Center, Department of Chemistry, Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Khon Kaen University, Khon Kaen 40002 Thailand. The support from National Research University Project through Advanced Functional Material Research Cluster, Office of the Higher Education, is highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chanaiporn Danvirutai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sronsri, C., Noisong, P. & Danvirutai, C. Isoconversional kinetic, mechanism and thermodynamic studies of the thermal decomposition of NH4Co0.8Zn0.1Mn0.1PO4·H2O. J Therm Anal Calorim 120, 1689–1701 (2015). https://doi.org/10.1007/s10973-015-4471-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4471-x

Keywords

Navigation