Skip to main content
Log in

Phase transition at thermal dehydration in stilbite

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal dehydration of stilbite was investigated by thermogravimetry and in situ X-ray powder diffraction. Sample mass changes continuously over the whole temperature range, with anomaly near 175 °C described in terms of the second-order phase transition with changes in symmetry from F-centered unit cell to A-centered one. This contradicts to the step-wise change in sample mass and the first-order phase transition with symmetry changing from F2/m to Amma reported in literature. The change in the order of the phase transition by means of the changes in experimental techniques is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Breck DW. Zeolites molecular sieves, structure, chemistry and use. New York: Wiley; 1974.

    Google Scholar 

  2. Meier WM, Olson DH. Atlas of zeolite structure types. Pittsburg: Polycrystal Book Service; 1978.

    Google Scholar 

  3. Rinaldi R. Zeolites. In: Frye K, editor. The encyclopedia of mineralogy. Stroudsburg: Hutchinson Ross Pub Co; 1981. p. 522–32.

    Google Scholar 

  4. Van Reeuwijk LP. The thermal dehydration of natural zeolites. Wageningen: Madedelingen Landbouwhogeschool; 1974.

    Google Scholar 

  5. Milligan WO, Weiser HB. Mechanism of the dehydration of zeolites. J Phys Chem. 1937;41:1029–40.

    Article  CAS  Google Scholar 

  6. Smykatz-Kloss W. Application of differential thermal analysis in mineralogy. J Therm Anal Calorim. 1982;23:15–44.

    Article  CAS  Google Scholar 

  7. Joshi MS, Rao PM, Choudhari AL, Kanitkar RG. Thermal behaviour of natural stilbite crystals. Thermochim Acta. 1982;58:79–86.

    Article  CAS  Google Scholar 

  8. Yörükoğulları E, Yılmaz G, Dikmen S. Thermal treatment of zeolitic tuff. J Therm Anal Calorim. 2010;100:925–8.

    Article  Google Scholar 

  9. Snellings R, Mertens G, Elsen J. Calorimetric evolution of the early pozzolanic reaction of natural zeolites. J Therm Anal Calorim. 2010;101:97–105.

    Article  CAS  Google Scholar 

  10. Gottardi G, Galli E. Natural zeolites. Berlin: Springer-Verlag; 1985.

    Google Scholar 

  11. Cruciani G, Artioli G, Gualtieri A, Stahl K, Hanson JC. Dehydration dynamics of stilbite using synchrotron X-ray diffraction. Am Miner. 1997;82:729–39.

    CAS  Google Scholar 

  12. Sheldrick GM. A short history of SHELX. Acta Cryst. 2008;A64:112–22.

    CAS  Google Scholar 

  13. Mortier WJ, Pluth JJ, Smith JV. Positions of cations and molecules in zeolites with the mordenite-type framework. II. Dehydrated hydrogen-ptilolite. Mater Res Bull. 1975;10:1317–26.

    Google Scholar 

  14. Hajdo F. Revised parameters of the analytic fits for coherent and incoherent scattered X-ray intensities of the first 36 atoms. Acta Cryst. 1972;A28:250–2.

    Google Scholar 

  15. Larson AC, Von Dreele RB. General Structure analysis system (GSAS). Los Alamos National Laboratory Report LAUR 86–748; 2000.

  16. Toby BH. EXPGUI, a graphical user interface for GSAS. J Appl Cryst. 2001;34:210–3.

    Article  CAS  Google Scholar 

  17. Drebushchak VA. Isobaric zeolite dehydration. Geochem Int. 1990;27(8):115–20.

    Google Scholar 

  18. Drebushchak VA. Thermogravimetric investigation of the phase transition in the zeolite heulandite at dehydration. Thermochim Acta. 1990;159:377–81.

    Article  CAS  Google Scholar 

  19. Dementiev SN, Drebushchak VA. Dehydration of zeolites at scanning heating. Geochem Int. 1992;29(9):1361–7.

    Google Scholar 

  20. Zhurov VV, Ivanov SA. PROFIT computer program for processing powder diffraction data on an IBM PC with a graphic user interface. Crystallogr Rep. 1997;42(2):202–6.

    Google Scholar 

  21. Galli E. Refinement of the crystal structure of stilbite. Acta Cryst. 1971;B27:833–41.

    Google Scholar 

  22. Quartieri S, Vezzalini G. Crystal chemistry of stilbites: structure refinement of one normal and four chemically anomalous samples. Zeolites. 1987;7:163–70.

    Article  CAS  Google Scholar 

  23. Alberti A, Rinaldi R, Vezzalini G. Dynamics of dehydration in stilbite-type structures; stellerite phase B. Phys Chem Miner. 1978;68:880–99.

    Google Scholar 

  24. Armbruster T, Gunter ME. Stepwise dehydration of heulandite-clinoptilolite from Succor Creek, Oregon, U.S.A.: a single-crystal X-ray study at 100 K. Am Miner. 1991;76:1872–83.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Foundation for Basic Research (grant # 10–05–00483).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Drebushchak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drebushchak, V.A., Dementiev, S.N. & Seryotkin, Y.V. Phase transition at thermal dehydration in stilbite. J Therm Anal Calorim 107, 1293–1299 (2012). https://doi.org/10.1007/s10973-011-1608-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1608-4

Keywords

Navigation