Skip to main content
Log in

From electrical analog to thermophysical modeling of DSC

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Electrical analog modeling is the conventional way for the discussion of how thermoanalytical devices work. This tradition goes back to the 50–60s of the twentieth century, when the electric circuits worked with analog signal, and RC circuits were the advanced tool for the calculation of integrals and derivatives. Today the electric circuits work with digital signal, and the computation is performed with microchips and computers. Electrical analog modeling failed to explain how DSC calibration coefficient changes with temperature. This problem was solved by means of direct thermophysical consideration. The temperature of maximum sensitivity for three DSCs is shown to obey the equation for the calibration coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rodríguez de Rivera M, Socorro F, Matos JS. Modeling of the thermal effects involved in the determination of heat of mixing, using an ITC operating in continuous mode. J Therm Anal Calorim. 2010;99:791–7.

    Article  Google Scholar 

  2. Khane V, Usman S. Further on integrator circuit analogy for natural convection. Nucl Eng Des. 2010;240:609–15.

    Article  CAS  Google Scholar 

  3. Couto SM. Modeling grain drying as discharge of an RC electrical circuit. Trans ASAE. 2002;45:1445–54.

    Google Scholar 

  4. Mudd C. Evaluation of phase transition errors in heat capacity calorimeters using SPICE simulated RC models. J Biochem Biophys Meth. 1999;39:7–38.

    Article  CAS  Google Scholar 

  5. Nam S-K, Kim J-K, Cho S-C, Lee S-K. Design and characterization of a high resolution microfluidic heat flux sensor with thermal modulation. Sensors. 2010;10:6594–611.

    Article  CAS  Google Scholar 

  6. Swietoslawski W. Microcalorimetry. New York: Reinhold Pub. Corp.; 1946.

    Google Scholar 

  7. Calvet E, Prat H. Microcalorimétrie: Applications Physico-chimiques et Bioloques. Paris: Masson ETCie; 1956.

    Google Scholar 

  8. Hemminger W, Höhne G. Calorimetry. Fundamentals and practice. Weinheim: Verlag Chemie GmbH; 1984.

    Google Scholar 

  9. Šestác J. Thermophysical properties of solids: their measurements and theoretical thermal analysis. Prague: Academia; 1984.

    Google Scholar 

  10. Zielenkiewicz W. Calorimetry. Warszawa: Institute of Physical Chemistry of the Polish Academy of Sciences; 2005.

    Google Scholar 

  11. Wendlandt WW. Thermal methods of analysis. New York: Wiley-Interscience; 1974. p. 505.

    Google Scholar 

  12. Dosch EL. An electrical technique for characterization of response parameters of DTA sample holders. Thermochim Acta. 1970;1:367–71.

    Article  CAS  Google Scholar 

  13. Bush V. Structural analysis by electric circuit analogies. J Franklin Inst. 1934;217:289–329.

    Article  Google Scholar 

  14. Gutenmakher LI. Electrical models. Moscow: USSR Academy of Sciences; 1949. (in Russian).

    Google Scholar 

  15. Liebman G. A new electrical analog method for the solution of transient heat conduction problems. Trans ASME. 1956;78:655–65.

    Google Scholar 

  16. Tetelbaum IM. Elektrische Analogierechenverfahren. Berlin: Verlag Technik; 1963.

    Google Scholar 

  17. Gusenkov GN, Krestov GA. Problems of non-linear theory in differential scanning calorimetry. J Therm Anal. 1978;13:369–86.

    Article  CAS  Google Scholar 

  18. Seybold K, Meisel T, Cserfalvi T. Modeling of quantitative DTA equipment I. Electric analog approach. J Therm Anal. 1979;15:93–100.

    Article  CAS  Google Scholar 

  19. Sarge SM, Gmelin E, Höhne GWH, Cammenga HK, Hemminger W, Eysel W. The caloric calibration of scanning calorimeters. Thermochim Acta. 1994;247:129–68.

    Article  CAS  Google Scholar 

  20. Sarge SM, Höhne GWH, Cammenga HK, Eysel W, Gmelin E. Temperature, heat and heat flow calibration of scanning calorimeters in the cooling mode. Thermochim Acta. 2000;361:1–20.

    Article  CAS  Google Scholar 

  21. Drebushchak VA. Calibration coefficient of a heat-flow DSC—part 1. Relation to the sensitivity of a thermocouple. J Therm Anal Calorim. 2004;76:941–7.

    Article  CAS  Google Scholar 

  22. Drebushchak VA. Calibration coefficient of a heat-flow DSC—part 2. Optimal calibration procedure. J Therm Anal Calorim. 2005;79:213–8.

    Article  CAS  Google Scholar 

  23. Drebushchak VA. Approximation of the emf of a thermocouple. Part 1. The polynomials of temperature and Runge’s phenomenon. J Therm Anal Calorim. 2009;96:315–20.

    Article  CAS  Google Scholar 

  24. Marti E, Kaisersberger E, Emmerich W-D. New aspects of thermal analysis. Part I. Resolution of DSC and means for its optimization. J Therm Anal Calorim. 2004;77:905–34.

    Article  CAS  Google Scholar 

  25. Aubuchon SR. Recent developments in DSC technology. In: ESTAC-10. Abstract Book; 2010. p. 49.

  26. van Ekeren PJ, Hakvoort G, de Klerk WPC, Van den Mooter GRJ, Vanden Poel G, Pijpers MFJ, Witteveen AJ. Renewal of the TAWN test for measuring the resolution of DSCs. In: ESTAC—10 Program, Rotterdam; 2010.

  27. Drebushchak VA. Calibration coefficient of a heat-flow DSC—part 3. Electromotive force of a thermocouple as a function of temperature. J Therm Anal Calorim. 2007;90:289–98.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Drebushchak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drebushchak, V.A. From electrical analog to thermophysical modeling of DSC. J Therm Anal Calorim 105, 495–500 (2011). https://doi.org/10.1007/s10973-010-1200-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-1200-3

Keywords

Navigation