Skip to main content
Log in

Thermal analysis of the ω nanophase transformation from the metastable β Ti–12Mo alloy

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, the thermal analysis of the ω nanophase transformation from a quenched metastable β Ti–12Mo alloy composition (mass%) was investigated by electrical resistivity and dilatometry measurements. The activation energy was observed to be 121 ± 20 kJ mol−1 (from resistivity measurements) and 114 ± 12 kJ mol−1 (from dilatometry measurements) during the early stage of the transformation process. The kinetic of the ω nanophase transformation was modelized by using the classical Johnson–Mehl–Avrami (JMA) theory and a modified Avrami (MA) analysis. An Avrami exponent close to 1.5 was found at the early stage of the transformation suggesting a pure growth mechanism from pre-existing nucleation sites. Nevertheless, it was observed a decrease of the Avrami exponent to 0.5 at higher transformed fraction demonstrating a dimension loss in the growth mechanism due to the existence of the high misfit strain at the interface β/ω.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Eylon D. Issues in the development of beta titanium alloys. In: Proc 1 Int Symp Metall Technol Pract Titanium Alloys; 1994. p. 29.

  2. Ankem S, Green CA. Recent developments in microstructure/property relationships of beta titanium alloys. Mater Sci Eng A. 1999;263:127–31.

    Article  Google Scholar 

  3. Williams JC, Blackburn MJ. The influence of misfit on the morphology and stability of the omega phase in titanium-transition metal alloys. Trans Met Soc AIME. 1969;245:2352–5.

    CAS  Google Scholar 

  4. Yamane T, Miyakubi A. Omega phase formation in Ti–Fe alloys. Met Soc AIME. 1980;2:1309–16.

    Google Scholar 

  5. Krishman R, Naik UM. Omega and alpha precipitation in Ti–15Mo alloy. Met Soc AIME. 1980;2:1335.

    Google Scholar 

  6. Takemoto Y, Hida M, Sakakibara A. Mechanism of omega → alpha transformation in beta -titanium alloy. J Jpn Inst Met. 1993;57:261–7.

    CAS  Google Scholar 

  7. Duerig TW, Terlinde GT, Williams JC. Phase transformations and tensile properties of Ti-10 V–2Fe–3Al. Metall Trans A. 1980;11:1987–98.

    Article  Google Scholar 

  8. Chung DDL. Thermal analysis by electrical resistivity measurement. J Therm Anal Calorim. 2001;65:153–65.

    Article  CAS  Google Scholar 

  9. Morra PV, Bottger AJ, Mittemeijer EJ. Decomposition of iron-based martensite. A kinetic analysis by means of differential scanning calorimetry and dilatometry. J Therm Anal Calorim. 2001;64:905–14.

    Article  CAS  Google Scholar 

  10. Gloriant T, Texier G, Prima F, Laillé D, Gordin DM, Thibon I, et al. Synthesis and phase transformations of beta metastable Ti-based alloys containing biocompatible Ta, Mo and Fe beta-stabilizer elements. Adv Eng Mater. 2006;8:961–5.

    Article  CAS  Google Scholar 

  11. Hill MA, Polonis DH. Influence of beta phase decomposition on the temperature coefficient of resistivity of titanium alloys. J Mater Sci. 1987;22:2181–4.

    Article  CAS  Google Scholar 

  12. Prima F, Vermaut P, Ansel D, Debuigne J. Omega precipitation in a beta metastable titanium alloy, a resistometric study. Mater Trans JIM. 2000;41:1092–7.

    Article  CAS  Google Scholar 

  13. Gloriant T, Texier G, Sun F, Thibon I, Prima F, Soubeyroux JL. Characterization of nanophase precipitation in a metastable β titanium-based alloy by electrical resistivity, dilatometry and neutron diffraction. Scripta Mater. 2008;58:271–4.

    Article  CAS  Google Scholar 

  14. Gordin DM, Delvat E, Chelariu R, Ungureanu G, Besse M, Laille D, et al. Characterization of Ti–Ta alloys synthesized by cold crucible levitation melting. Adv Eng Mater. 2008;10:714–9.

    Article  CAS  Google Scholar 

  15. Ikeda M, Komatsu SY, Sugimoto T, Kamei K. Negative temperature dependence of electrical resistivity in Ti–Mo binary alloys. In: Proc Sixth World Conference on Titanium, les Editions de Physique, Paris; 1988. pp. 313–8.

  16. Avrami M. Kinetics of phase change. I General theory. J Chem Phys. 1939;7:1103–12.

    Article  CAS  Google Scholar 

  17. Avrami M. Kinetics of phase change. II Transformation-time relations for random distribution of nuclei. J Chem Phys. 1940;8:212–24.

    Article  CAS  Google Scholar 

  18. Avrami M. Kinetics of phase change. III Granulation, phase change, and microstructure kinetics of phase change. J Chem Phys. 1941;9:177–84.

    Article  CAS  Google Scholar 

  19. Johnson WA, Mehl RF. Reaction kinetics in processes of nucleation and growth. Trans Am Inst Min Metall Pet Eng. 1939;135:416.

    Google Scholar 

  20. Landauer R. The electrical resistance of binary metallic mixtures. J Appl Phys. 1952;23:779–84.

    Article  CAS  Google Scholar 

  21. Van Bohemen SMC. Van der Laars M, Sietsma J, Van der Zwaag S. Modelling of the β → α + β transformation in a metastable β Ti alloy based on the growth kinetics and the morphology of the α plates. Int J Mater Res. 2007;98:476–84.

    Article  Google Scholar 

  22. Mao M, Altounian Z. Accurate determination of the Avrami exponent in phase transformations. Mater Sci Eng A. 1991;149:L5–8.

    Article  Google Scholar 

  23. Calka A, Radlinski AP. Decoupled bulk and surface crystallization in Pd85Si15 glassy metallic alloys: description of isothermal crystallization by a local value of the Avrami exponent. J Mater Res. 1988;3:59–66.

    Article  CAS  Google Scholar 

  24. Christian JW. The theory of transformation in metals and alloys, Part 1. Oxford: Pergamon Press; 1975.

    Google Scholar 

  25. Cumbrera FL, Sanchez-Bajo F. The use of the JMAYK kinetic equation for the analysis of solid-state reactions: critical considerations and recent interpretations. Thermochim Acta. 1995;266:315–30.

    Article  CAS  Google Scholar 

  26. Ghosh G, Chandrasekaran M, Delaey L. Isothermal crystallization kinetics of Ni24Zr76 and Ni24(Zr–X)76 amorphous alloys. Acta Metall. 1991;31:925–36.

    Article  Google Scholar 

  27. Gutzow I, Dochev V, Pancheva E, Dimov K. Induced crystallization of poly(ethylene terephthalate) on small metallic nucleating particles. J Polym Sci. 1978;16:1155–68.

    Google Scholar 

  28. De Fontaine D. Simple models for the omega phase transformation. Metall Trans A. 1988;19:169–75.

    Article  Google Scholar 

  29. Sun F, Gloriant T. Primary crystallization process of amorphous Al88Ni6Sm6 alloy investigated by differential scanning calorimetry and by electrical resistivity. J All Comput. 2009;477:133–8.

    Article  CAS  Google Scholar 

  30. Prima F, Vermaut P, Texier G, Ansel D, Gloriant T. Evidence of α-nanophase heterogeneous nucleation from ω particles in a β-metastable Ti-based alloy by high-resolution electron microscopy. Scripta Mater. 2006;54:645–8.

    Article  CAS  Google Scholar 

  31. Sukedai E, Hashimoto H, Tomita M. Investigation of omega-phase in Ti–Mo alloys by high resolution electron microscopy, image processing and dark-field methods. Philos Mag A. 1991;64:1201–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by China Scholarship Council (CSC) and INSA-Rennes (France) in the framework of UT-INSA project (2006–2009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Gloriant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, F., Laillé, D. & Gloriant, T. Thermal analysis of the ω nanophase transformation from the metastable β Ti–12Mo alloy. J Therm Anal Calorim 101, 81–88 (2010). https://doi.org/10.1007/s10973-010-0713-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-0713-0

Keywords

Navigation