Skip to main content
Log in

Effect of chemical demineralization on thermal behavior of bituminous coals

  • regular
  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Growing environmental concerns and the need for alternatives for oil and natural gas resulted in intensive researches on ultra clean coal (UCC). Therefore, the researches related to practice and application of various methods to produce UCC become more important. Thermal characterization of chemically demineralized coals by thermogravimetric analysis method is presented in this study. The aim of the study is to provide thermal data for HF–HNO3 leaching system used for the production of UCC. Coal samples were first physically enriched by density separation. Then the enriched portion was chemically demineralized by using HF and HNO3, respectively. Ash content of coal samples were reduced to a range of 0.12–0.41% by chemical demineralization process. The petrographic, ultimate and proximate analyses were carried out to determine main features of samples. Physically and chemically enriched coal samples were then analyzed in a TG by two different techniques separately. The first technique covered thermal characterization of samples under non-isothermal conditions. Characteristic temperatures for each sample were obtained from the TG and DTG data. The second technique involved the determination of reactivity of in situ produced chars of each sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. http://www.csiro.au

  2. http://www.gasandoil.com/goc/company/cnn30896.htm

  3. http://www.physorg.com/news4098.html

  4. KM Steel JW Patrick (2003) Fuel 82 1917 Occurrence Handle1:CAS:528:DC%2BD3sXlvFeiurY%3D Occurrence Handle10.1016/S0016-2361(03)00149-2

    Article  CAS  Google Scholar 

  5. F Rubieira A Arenillas C Pevida R Garcia JJ Pis KM Steel JW Patrick (2002) Fuel Process. Technol. 79 273

    Google Scholar 

  6. KM Steel JW Patrick (2001) Fuel 80 2019 Occurrence Handle1:CAS:528:DC%2BD3MXotVOqsLo%3D Occurrence Handle10.1016/S0016-2361(01)00092-8

    Article  CAS  Google Scholar 

  7. RH Yoon (1991) Coal Preparation SME-AIME Colorado 966

    Google Scholar 

  8. GR Drykacz EP Horwitz (1982) Fuel 61 3 Occurrence Handle10.1016/0016-2361(82)90285-X

    Article  Google Scholar 

  9. GR Drykacz CAA Bloomquist (1992) Energy Fuels 6 357 Occurrence Handle10.1021/ef00034a005

    Article  Google Scholar 

  10. GR Drykacz L Rustic J Fredericks (1992) Energy Fuels 6 720 Occurrence Handle10.1021/ef00036a006

    Article  Google Scholar 

  11. S Mukherjee PC Borthakur (2003) Fuel Process. Technol. 85 157 Occurrence Handle10.1016/S0378-3820(03)00140-1

    Article  Google Scholar 

  12. S Mukherjee PC Borthakur (2001) Fuel 80 2037 Occurrence Handle1:CAS:528:DC%2BD3MXotVOqsLg%3D Occurrence Handle10.1016/S0016-2361(01)00094-1

    Article  CAS  Google Scholar 

  13. MS Karen J Besida TA O’Donell (2001) Fuel Process. Technol. 70 171 Occurrence Handle10.1016/S0378-3820(01)00171-0

    Article  Google Scholar 

  14. S Yaman R Yavuz S Küçükbayrak Y Taptýk (2001) En. Conv. Manag. 42 2119 Occurrence Handle1:CAS:528:DC%2BD3MXnsVShtbo%3D Occurrence Handle10.1016/S0196-8904(00)00172-2

    Article  CAS  Google Scholar 

  15. NP Vasilakos SC Clinton (1984) Fuel 63 1561 Occurrence Handle1:CAS:528:DyaL2MXisl2iug%3D%3D Occurrence Handle10.1016/0016-2361(84)90227-8

    Article  CAS  Google Scholar 

  16. DJ Boron RS Taylor (1985) Fuel 64 209 Occurrence Handle1:CAS:528:DyaL2MXhtFKgsL8%3D Occurrence Handle10.1016/0016-2361(85)90218-2

    Article  CAS  Google Scholar 

  17. E Sima-Ella G Yuan T Mays (2005) Fuel 84 1920 Occurrence Handle1:CAS:528:DC%2BD2MXls1yitbs%3D Occurrence Handle10.1016/j.fuel.2005.03.022

    Article  CAS  Google Scholar 

  18. R Pietrzak H Wachowska (2004) Thermochim. Acta 419 247 Occurrence Handle1:CAS:528:DC%2BD2cXmvFOnsb8%3D Occurrence Handle10.1016/j.tca.2004.02.014

    Article  CAS  Google Scholar 

  19. S Kizgut Y Baran D Cuhadaroglu (2003) J. Therm. Anal. Cal. 71 857 Occurrence Handle1:CAS:528:DC%2BD3sXjvVylurk%3D Occurrence Handle10.1023/A:1023330310757

    Article  CAS  Google Scholar 

  20. MJ Cuesta F Rubiera A Arenillas MJ Iglesias I Suárez-Ruiz JJ Pis (2005) J. Therm. Anal. Cal. 81 333 Occurrence Handle1:CAS:528:DC%2BD2MXnslyqsrY%3D Occurrence Handle10.1007/s10973-005-0788-1

    Article  CAS  Google Scholar 

  21. A Miyake S Ando T Ogawa Y Iizuka (2005) J. Therm. Anal. Cal. 80 519 Occurrence Handle1:CAS:528:DC%2BD2MXjvVCms7s%3D Occurrence Handle10.1007/s10973-005-0687-5

    Article  CAS  Google Scholar 

  22. A Arenillas F Rubiera B Arias JJ Pis M Faúndez AL Gordon XA García (2004) J. Therm. Anal. Cal. 76 603 Occurrence Handle1:CAS:528:DC%2BD2cXktVWhtLc%3D Occurrence Handle10.1023/B:JTAN.0000028039.72613.73

    Article  CAS  Google Scholar 

  23. V Strezov JA Lucas TJ Evans L Strezov (2004) J. Therm. Anal. Cal. 78 385 Occurrence Handle1:CAS:528:DC%2BD2cXovFOgtLs%3D Occurrence Handle10.1023/B:JTAN.0000046105.01273.61

    Article  CAS  Google Scholar 

  24. S Kizgut S Yilmaz (2003) Fuel Process. Technol. 85 103 Occurrence Handle10.1016/S0378-3820(03)00111-5

    Article  Google Scholar 

  25. TK Das (2001) Fuel 80 97 Occurrence Handle1:CAS:528:DC%2BD3cXns1elurg%3D Occurrence Handle10.1016/S0016-2361(00)00058-2

    Article  CAS  Google Scholar 

  26. JB Milligan KM Thomas JC Crelling (1997) Fuel 76 1249 Occurrence Handle1:CAS:528:DyaK2sXotVChtbo%3D Occurrence Handle10.1016/S0016-2361(96)00236-0

    Article  CAS  Google Scholar 

  27. H Haykýrý-Açma A Ersoy-Meriçboyu S Küçükbayrak (2001) Energy Convers.Manage. 42 11 Occurrence Handle10.1016/S0196-8904(00)00040-6

    Article  Google Scholar 

  28. KE Ozbas C Hicyilmaz MV Kök S Bilgen (2000) Fuel Process. Technol. 64 211 Occurrence Handle1:CAS:528:DC%2BD3cXislWgsL8%3D Occurrence Handle10.1016/S0378-3820(00)00064-3

    Article  CAS  Google Scholar 

  29. ISO 7404-2, Document no ISO/TC 27 N 1255 (1979).

  30. RM Bustin AR Cameron (1985) Coal Petrology. Its principles methods and applications, short course notes,Vol. 3, Geological Association of Canada Canada 81

    Google Scholar 

  31. E Stach M Machowsky M Teichmuller G Taylor D Chandra R Teichmuller (1982) Stach’s text book of coal petrology, EditionNumber3rd Gebruder Bortraeger Berlin

    Google Scholar 

  32. ISO 7404-5, Document no ISO/TC 27 N 1236 (1979).

  33. ISO, 7404-3, Document no ISO/TC 27 N 1254 (1979).

  34. RG Jenkins SP Nandi PL Walker (1973) Fuel 52 288 Occurrence Handle1:CAS:528:DyaE2cXmtF2lsw%3D%3D Occurrence Handle10.1016/0016-2361(73)90059-8

    Article  CAS  Google Scholar 

  35. RA Rodríguez CC Jul D Gómez-Limón (1996) Fuel 75 606 Occurrence Handle10.1016/0016-2361(95)00283-9

    Article  Google Scholar 

  36. A Volborth (1987) Coal Science and Chemistry Elsevier Amsterdam

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kizgut.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kizgut, S., Baris, K. & Yilmaz, S. Effect of chemical demineralization on thermal behavior of bituminous coals. J Therm Anal Calorim 86, 483–488 (2006). https://doi.org/10.1007/s10973-005-7329-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-005-7329-9

Keywords

Navigation