Skip to main content
Log in

Small-angle scattering of synchrotron radiation investigations of nanostructured alumina membranes synthesized by sol–gel method

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Alumina asymmetric ceramic membranes were prepared by sol–gel method. Research on structure of alumina membrane active layer is conducted by methods of physical nitrogen adsorption and small-angle scattering of synchrotron radiation, the obtained data confirms and supplements each other. Surface area for the studied material varies from 255 to 264 m2/g, average pore diameter varies from 5.3 nm to 5.4 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chang S, Choo K-H, Lee Ch-H, Pek U-H, Koh U-Ch, Kim S-W, Koh J-H (1994) Application of ceramic membrane as a pretreatment in anaerobic digestion of alcohol-distillery wastes. J Membr Sci 90:131–139

    Article  Google Scholar 

  2. Ebrahimi M, Shams Ashaghi K, Engel L, Willershausen D, Mund P, Bolduan P, Czermak P (2009) Characterization and application of different ceramic membranes for the oil-field produced water treatment. Desalin 245:533–540

    Article  Google Scholar 

  3. Jana S, Saikia A, Purkait MK, Mohanty K (2011) Chitosan based ceramic ultrafiltration membrane: preparation, characterization and application to remove Hg(II) and As(III) using polymer enhanced ultrafiltration. Chem Eng J 170:209–219

    Article  Google Scholar 

  4. Das N, Bandyopadhyay S, Chattopadhyay D, Maiti HS (1996) Tape-cast ceramic membranes for microfiltration application. J Mater Sci 31:5221–5225

    Article  Google Scholar 

  5. Ayral A (2008) Colloid science for functional nanomaterials: application to oxide ceramic membranes. Progr Colloid Polym Sci 135:1–9

    Google Scholar 

  6. Gao N, Li M, Jing W, Fan Y, Xu N (2011) Improving the filtration performance of ZrO2 membrane in non-polar organic solvents by surface hydrophobic modification. J Membr Sci 375:276–283

    Article  Google Scholar 

  7. Silva LLO, Vasconcelos DCL, Nunes EHM, Caldeira L, Costa VC, Musse AP, Hatimondi SA, Nascimento JF, Grava W, Vasconcelos WL (2012) Processing, structural characterization and performance of alumina supports used in ceramic membranes. Ceram Int 38:1943–1949

    Article  Google Scholar 

  8. Wei CC, Li K (2009) Preparation and characterization of a robust and hydrophobic ceramic membrane via an improved surface grafting technique. Ind Eng Chem Res 48:3446–3452

    Article  Google Scholar 

  9. Shaposhnik VA (1999) Membrane methods of division of mixes of substances. Sorosovsky Educ J 9:27–32

    Google Scholar 

  10. Svitcov AA (2006) Introduction in membrane technology. DeLi Print, Moscow

    Google Scholar 

  11. Huang P, Xu N, Shi J, Lin YS (1996) Characterization of asymmetric ceramic membranes by modified permporometry. J Membr Sci 116:301–305

    Article  Google Scholar 

  12. Wang YH, Liu XQ, Meng GY (2007) Preparation of asymmetric pure titania ceramic membranes with dual functions. Mater Sci Eng A 445–446:611–619

    Article  Google Scholar 

  13. Das N, Maiti HS (2009) Ceramic membrane by tape casting and sol–gel coating for microfiltration and ultrafiltration application. J Phys Chem Solid 70:1395–1400

    Article  Google Scholar 

  14. Ahmad AL, Idrus NF, Othman MR (2005) Preparation of perovskite alumina ceramic membrane using sol–gel method. J Membr Sci 262:129–137

    Article  Google Scholar 

  15. Kagramanov GG, Nazarov VV, Chupis RA (2001) Reception and properties of ultrafiltration ceramic membranes. Ogneupory Technol Ceram 3:22–25

    Google Scholar 

  16. Leenaars AFM, Burggraaf AJ (1985) The properties and characterization of alumina membranes with ultrafine pores. J Membr Sci 24:261–270

    Article  Google Scholar 

  17. Pierre AC, Uhlmann DR (1986) Amorphous aluminum hydroxide gels. J Non-cryst Solid 1–3:271–276

    Article  Google Scholar 

  18. Huang XR, Meng GL, Huang ZT, Geng JM (1997) Preparation of unsupported alumina membrane by sol–gel techniques. J Membr Sci 133:145–150

    Article  Google Scholar 

  19. Leenaars AFM, Keizer K, Burggraaf AJ (1984) The preparation and characterization of alumina membranes with ultra-fine pores. J Mater Sci 19:1077–1088

    Article  Google Scholar 

  20. Yoldas BE (1977) Preparation of glasses and ceramics from metal-organic compounds. J Mater Sci 6:1203–1208

    Article  Google Scholar 

  21. Yoldas BE (1975) A transparent porous alumina. Ceram Bull 54:286–288

    Google Scholar 

  22. Kurokawa Y, Shirakawa T, Saito S, Yui N (1986) Transparent alumina film from ultrafine alumina sol. J Mater Sci Lett 5:1070–1072

    Article  Google Scholar 

  23. Buelna G, Lin YS (1999) Sol–gel-derived mesoporous c-alumina granules. Microporous Mesoporous Mater 30:359–369

    Article  Google Scholar 

  24. Li J, Wang X, Wang L, Hao Y, Huang Y, Zhang Y, Sun X, Liu X (2006) Preparation of alumina membrane from aluminium chloride. J Membr Sci 1–2:6–11

    Article  Google Scholar 

  25. Fernando JA, Chung DDL (2002) Pore structure and permeability of an alumina fiber filter membrane for hot gas filtration. J Porous Mater 9:211–219

    Article  Google Scholar 

  26. Chukin GD (2010) Structure aluminum oxide and catalysts. Mechanisms of reactions. Paladin, Moscow

    Google Scholar 

  27. Churaev NV, Sobolev VD (2006) Superficial forces in nanodispersions. Mod Probl Phys Chem 2:345–349

    Google Scholar 

  28. Sakka S (2005) Handbook of sol-gel science and technology. Kluwer Academic Publishers, New York

  29. Cotton FA, Wilkinson G, Murillo CA, Bochmann M (1999) Advanced inorganic chemistry, 6th edn. Wiley-Interscience, USA

    Google Scholar 

  30. Greg SJ, Syng KSW (1967) Adsorption surface area and porosity. Academic Press, London

    Google Scholar 

  31. Vyacheslavov AS, Ephraim M (2011) Determination of the surface area and porosity of materials by gas sorption: methodologies. Moscow State University, Moscow

    Google Scholar 

  32. Svergun DI, Feigin LA (1986) Small-angle X-ray and neutron scattering. Nauka, Moscow

    Google Scholar 

  33. Svergun DI, Shtykova EV, Volkov VV, Feigin LA (2011) Small-angle X-ray scattering, synchrotron radiation, and the structure of bio- and nano-systems. Crystallogr Rep 56:725–750

    Article  Google Scholar 

  34. Riekel C, Bösecke P, Diat O, Engström P (1996) New opportunities in small-angle X-ray scattering and wide-angle X-ray scattering at a third generation synchrotron radiation source. J Mol Struct 383:291–302

    Article  Google Scholar 

  35. Julien R (1989) Fractal aggregates. Success Phys Sci 157:339–357

    Google Scholar 

  36. Vasilevskaya TN, Antropov TV (2009) Studying the structure of nanoporous glassy matrix by X-ray small-angle scattering. Solid State Phys 51:2386–2393

    Article  Google Scholar 

  37. Plavnik GM (1984) Finding the size distribution of the particles maloanizometrich unequal forms by small-angle X-ray diffraction. Crystallography 29:210–214

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by Program of the Ural Branch of the Russian Academy of Sciences (12-U-3-1014) and the Russian Foundation for Basic Research (12-03-31272 mol_a and 12-03-90803-mol_rf_nr).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. F. Krivoshapkina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krivoshapkina, E.F., Petrakov, A.P., Krivoshapkin, P.V. et al. Small-angle scattering of synchrotron radiation investigations of nanostructured alumina membranes synthesized by sol–gel method. J Sol-Gel Sci Technol 68, 488–494 (2013). https://doi.org/10.1007/s10971-012-2945-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-012-2945-x

Keywords

Navigation