Skip to main content
Log in

Microstructure and dielectrical responses of pure and cobalt-doped CaCu3Ti4O12 ceramics by sol–gel synthesis route

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Cobalt-doped CCTO (CaCu3Ti4O12) ceramics were prepared by a conventional sol–gel synthesis method and the effects of Cobalt doping on the microstructures and dielectrical properties were investigated. The phase composition and microstructure were studied by means of X-ray diffraction (XRD) and high resolution scanning electron microscopy (HRSEM). Efficient crystalline phase formation accompanied by Cobalt induced lattice constant expansion was confirmed through XRD studies. HRSEM results show that doping effectively enhanced grain growth or densification. A compositional study reveals the variation of Cobalt diffusion in CCTO structure by the reduction of Ti presence according to the doping ratio. The dielectric constant reached a value as high as (εr = 25,400 at 1,000 and εr = 111,000 at 1,050 °C) at a cobalt-doping concentration of x = 0.2 at low frequency (50 Hz). The dielectrical constant and dielectric loss of the pure and cobalt-doped CCTO ceramics was measured for different concentrations and discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fang T, Lin W, Lin C (2007) Phys Rev B 76:045115-8

    Google Scholar 

  2. Home CC, Vogt T, Shapiro SM, Wakimoto S, Ramirez AP (2001) Science 293:673–676

    Article  Google Scholar 

  3. Kant C, Rudolf T, Mayr F, Krohns S, Lunkenheimer P, Ebbinghaus SG, Loidl A (2008) Phys Rev B 77:045131–045137

    Article  Google Scholar 

  4. Liu P, He Y, Li J, Zhu GQ, Bian XB (2007) Acta Phys Sin 56:5489–5493

    Google Scholar 

  5. Subramanian MA, Sleight AW (2002) Solid State Sci 4:347–351

    Article  CAS  Google Scholar 

  6. Ke SM, Huang HT, Fan HQ (2006) Appl Phys Lett 89:182904-3

    Google Scholar 

  7. Zhu Y, Zheng JC, Wu L, Frenkel AI, Hanson J, Northrup P, Ku W (2007) Phys Rev Lett 99:037602–037604

    Article  CAS  Google Scholar 

  8. Subramanian MA, Dong L, Duan N, Reisner BA, Sleight AW (2000) J Solid State Chem 151:323–325

    Article  CAS  Google Scholar 

  9. Carazeanu Popovici I, Prodan G (2012) J Sol-Gel Sci Technol. doi:10.1007/s10971-012-2807-6

    Google Scholar 

  10. Capsoni D, Bini M, Massarotti V, Chiodelli G, Mozzati MC, Azzoni CB (2004) J Solid State Chem 177:4494–4500

    Article  CAS  Google Scholar 

  11. Kobayashi W, Teresaki I (2003) Physica B 329:771–772

    Article  Google Scholar 

  12. Xu D, Zhang C, Lin Y, Jiao L, Yuan H, Zhao G, Cheng X (2012) J Alloy Comp 522:157–161

    Article  CAS  Google Scholar 

  13. Xu LF, Qi PB, Chen SS, Wang RL, Yang CP (2012) Mat Sci Eng B 177:494–498

    Article  CAS  Google Scholar 

  14. Li M, Chen XL, Zhang DF, Wang WY, Wang WJ (2010) Sens Actuators B 147:447–452

    Article  Google Scholar 

  15. Mu C, Zhang H, He Y, Liu P (2010) Physica B 405:386–389

    Article  CAS  Google Scholar 

  16. Fang L, Shen M, Zheng F, Li Z, Yang J (2008) J Appl Phys 104:064110-8

    Google Scholar 

  17. Sulaiman M, Hutagalung D, Fadzil Ain M, Ahmad A (2010) J Alloy Comp 493:486–492

    Article  CAS  Google Scholar 

  18. Jesurani S, Kanagesan S, Kalaivani T, Ashok K (2012) J Mater Sci Mater Electron 23:692–696

    Article  CAS  Google Scholar 

  19. Chunhong MU, Huaiwu Z, Yingli L, Yuanqiang S, Peng L (2010) J Rare Earths 28:43–47

    Article  Google Scholar 

  20. Dronskowski R (2007) Computational chemistry of solid state materials. Wiley, London, pp 13–16

    Google Scholar 

  21. Ouyang G, Yang GW, Sun CQ, Zhu WG (2008) Small 4:1359

    Article  CAS  Google Scholar 

  22. Ouyang G, Zhu WG, Sun CQ, Zhu ZM, Liao SZ (2010) Phys Chem Chem Phys 12:1543–1549

    Article  CAS  Google Scholar 

  23. West AR, Adams TB, Morrison FD, Sinclair DC (2004) J Eur Ceram Soc 24:1439–1448

    Article  CAS  Google Scholar 

  24. Irvine JTS, Sinclair DC, West AR (1990) Adv Mater 2:132

    Article  CAS  Google Scholar 

  25. Mandal KD, Rai AK, Singh L, Parkash O (2012) Bull Mater Sci 35:433–438

    Article  CAS  Google Scholar 

  26. Mu CH, Zhang HW, He Y, Shen J, Liu P (2009) J Phys D Appl Phys 42:175410

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the University Grants Commission—New Delhi (ETFTNMK 097-FIP-XI Plan) under the Faculty improvement programme XI Plan. We thank SRM University for providing the Nanotechnology Center Facilities. We wish to acknowledge DST-FIST (India)—SR/FST/PS1-155/2010 for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Ashok.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jesurani, S., Kanagesan, S. & Ashok, K. Microstructure and dielectrical responses of pure and cobalt-doped CaCu3Ti4O12 ceramics by sol–gel synthesis route. J Sol-Gel Sci Technol 64, 335–341 (2012). https://doi.org/10.1007/s10971-012-2862-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-012-2862-z

Keywords

Navigation