Skip to main content
Log in

Domain reorientation dynamics of sol–gel derived strontium doped PLZT (8/65/35)

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Polycrystalline samples of PLSZT with the composition Pb0.92−x La0.08Sr x (Zr0.65Ti0.35)O3 (where x = 0, 0.02, 0.04, 0.06, 0.08, and 0.10) have been synthesized by sol–gel technique. DTA analysis confirms that all the organic constituents get decomposed and final PLZT is formed at 545 °C. The XRD analysis suggests the formation of single rhombohedral perovskite phase with decreasing unit cell parameter. Crystallite size calculated, using Scherrer’s equation, was found to decrease with Sr doping due to smaller ionic radii of Sr than Pb. Compact uniform grain distribution was observed from SEM micrographs. The ferroelectric to paraelectric phase transition temperature, maximum dielectric constant and remanent polarization (P r) were found to decrease with Sr doping along with increasing diffuse nature of phase transformation. Detailed domain reorientation dynamics study suggests that Sr doping increases the percentage backswitching and decreases the normalized coercivity by decreasing the viscous nature of composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Uchino K (2000) Ferroelectric devices. Marcel Dekker, New York

    Google Scholar 

  2. Haertling GH (1999) J Am Ceram Soc 82:797

    CAS  Google Scholar 

  3. Zurcher P, Jones RE, Chu PY, Taylor DJ, White BE, Zafar S, Jiang B, Tom Lii YJ, Gillespie SJ (1997) IEEE Trans Comp Packaging Manufact Technol A 20:175

    Article  CAS  Google Scholar 

  4. Wang Z, Hu J, Yu MF (2007) Nanotechnology 18:1

    CAS  Google Scholar 

  5. Merz WJ (1954) Phys Rev 95:690

    Article  ADS  CAS  Google Scholar 

  6. Moreira EN, Lente MH, Povoa JM, Eiras JA (1998) J Korean Phys Soc 32:742

    Google Scholar 

  7. Lee KS, Kim YKII, Baik S, Kim J, Jung S (2001) Appl Phys Lett 79:2444

    Article  ADS  CAS  Google Scholar 

  8. Moulson AJ, Herbert JM (1990) Electroceramics: materials, properties, applications. Chapman and Hall, London

    Google Scholar 

  9. Jaffe B, Cook WR, Jaffe H (1971) Piezoelectric ceramics. Academic Press, New York

    Google Scholar 

  10. Shannigrahi SR, Choudhary RNP, Acharya HN, Sinha TP (1999) J Phy D Appl Phys 32:1539

    Article  ADS  CAS  Google Scholar 

  11. Dutta S, Choudary RNP, Sinha PK (2003) J Mater Sci Mater Electron 14:463

    Article  CAS  Google Scholar 

  12. Mohiddon MA, Yadav KL (2007) J Phys D Appl Phys 40:7540

    Article  ADS  CAS  Google Scholar 

  13. Shao QY, Li AD, Xia YD, Wu D, Liu ZG, Ming NB (2006) J Appl Phys 100:036102

    Article  ADS  Google Scholar 

  14. Kim SH, Ha J, Hwang CS, Kingon AI (2001) Thin Solid Films 394:131

    CAS  Google Scholar 

  15. Camargo ER, Popa M, Frantti J, Kakihana M (2001) Chem Mater 13:1943

    Article  Google Scholar 

  16. Roy S, Bysakh S, Subrahmanyam J (2006) J Mater Res 21:856

    Article  ADS  CAS  Google Scholar 

  17. Lee BW (2004) J Eur Ceram Soc 24:925

    Article  CAS  Google Scholar 

  18. Suryanarayana C, Grant Norton M (1998) X-ray diffraction a practical approach. Plenum Press, New York and London, p 213

    Google Scholar 

  19. Mohiddon MA, Yadav KL (2007) J Appl Phys 101:94101

    Article  Google Scholar 

  20. Lente MH, Picinin A, Rino JP, Eiras JA (2004) J Appl Phys 95:2646

    Article  ADS  CAS  Google Scholar 

  21. Lente MH, Eiras JA (2000) J Phys Condens Mater 12:5939

    Article  ADS  CAS  Google Scholar 

  22. Scott JF, Zhang MS, Godfrey RB, Araujo C, McMillan L (1987) Phys Rev B 53:4004

    Google Scholar 

  23. Damjanovic D (1998) Rep Prog Phys 61:1304

    Article  Google Scholar 

  24. Spiering GACM, Ulenaers MJE, Kampschor GLM, Vanhal HAM, Larsen PK (1991) J Appl Phys 70:2290

    Article  ADS  Google Scholar 

  25. Sekhar KC, Nath R (2007) J Appl Phys 102:44114

    Article  Google Scholar 

Download references

Acknowledgment

K. L. Yadav thanks to Council of Scientific and Industrial Research, New Delhi, India for financial support under the project grant number 03(1045/05/EMR-II)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. L. Yadav.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohiddon, M.A., Yadav, K.L. Domain reorientation dynamics of sol–gel derived strontium doped PLZT (8/65/35). J Sol-Gel Sci Technol 49, 88–94 (2009). https://doi.org/10.1007/s10971-008-1840-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-008-1840-y

Keywords

Navigation